Abstract:
A thin-film device for generating a blackbody spectrum is disclosed. The device includes first layer configured to generate heat in response to an applied voltage and a second layer configured to generate the blackbody radiation spectrum in response to the heat from the first layer. A thermocouple is disposed between the first layer and the second layer for measuring a temperature at the second layer. The thermocouple measures temperature at the second layer in order to control temperature at the second layer. The thermocouple can be a copper-carbon nanotube thermocouple.
Abstract:
A graphene strip includes a plurality of graphene strips, a metal additive and a binding material is provided. The plurality of graphene strips include strips of graphene nanoplatelets. The metal additive is applied to each of the plurality of graphene strips. The binding material couples the plurality of graphene strips together.
Abstract:
An apparatus, method and thin-film structure for producing a blackbody spectrum is disclosed. A first layer of the apparatus is configured to generate heat in response to an applied voltage. A second layer is configured to emit the blackbody radiation spectrum in response to the heat from the first layer. A thermal spreading layer is disposed between the first layer and the second layer. The thermal spreading layer includes a graphene sheet for reducing a spatial variation of the heat in a plane of the thermal spreading layer.
Abstract:
A method includes obtaining a substrate having at least one exposed metal surface. The method also includes electro-depositing metal onto the at least one exposed metal surface of the substrate and around at least a portion of an optical fiber to secure the optical fiber to the substrate. The substrate and the electro-deposited metal are configured to remove heat from the optical fiber. The method could further include electro-depositing metal around a sacrificial material and removing the sacrificial material to form at least one cooling channel through the electro-deposited metal. The optical fiber could include a polymer coating, where a portion of the polymer coating is removed at an end of the optical fiber. The substrate and the electro-deposited metal could be faceted at an input of the optical fiber and at an output of the optical fiber. The optical fiber could have a coiled arrangement on the substrate.
Abstract:
An apparatus, method and thin-film structure for producing a blackbody spectrum is disclosed. A first layer of the apparatus is configured to generate heat in response to an applied voltage. A second layer is configured to emit the blackbody radiation spectrum in response to the heat from the first layer. A thermal spreading layer is disposed between the first layer and the second layer. The thermal spreading layer includes a graphene sheet for reducing a spatial variation of the heat in a plane of the thermal spreading layer.
Abstract:
A graphene strip includes a plurality of graphene strips, a metal additive and a binding material is provided. The plurality of graphene strips include strips of graphene nanoplatelets. The metal additive is applied to each of the plurality of graphene strips. The binding material couples the plurality of graphene strips together.
Abstract:
A thin-film device for generating a blackbody spectrum is disclosed. The device includes first layer configured to generate heat in response to an applied voltage and a second layer configured to generate the blackbody radiation spectrum in response to the heat from the first layer. A thermocouple is disposed between the first layer and the second layer for measuring a temperature at the second layer. The thermocouple measures temperature at the second layer in order to control temperature at the second layer. The thermocouple can be a copper-carbon nanotube thermocouple.
Abstract:
A structure having a carbon nanotube material having a plurality of carbon nanotubes and an electrically or thermally conductive material disposed on at least a portion of the carbon nanotubes, such electrically or thermally conductive material being chemically bonded to such portion of the carbon nanotubes.