Abstract:
Certain aspects of the present disclosure provide techniques for power savings for reduced capability devices. A method that may be performed by a user equipment (UE) includes receiving a shared bandwidth part (BWP) configuration and a group common BWP configuration. The group common BWP configuration indicates a group common BWP shared by a group of UEs, including the UE, having one or more common capabilities or a common UE type. The method includes communicating using the group common BWP based on the group common BWP configuration.
Abstract:
Methods, systems, and devices for wireless communications are described. Aspects of the present disclosure describe a quick scanning method to reject global synchronization channel numbers (GSCNs) that do not include a synchronization signal block (SSB). The quick scanning method utilizes down-sampling techniques to reduce complexity associated with scanning many GSCNs for an SSB. For example, a user equipment (UE) may down-sample a signal to obtain a coarse signal subset (e.g., by using coarse bin sizes, sampling a portion of symbols). The UE may perform a fast Fourier Transform, along with one or more data processing techniques, to obtain a spectrogram corresponding to the signal. While the spectrogram may represent the signal in the frequency domain with reduced resolution, and may include energy information corresponding to different frequencies. The UE may utilize the spectrogram to examine frequencies corresponding to GSCNs to detect if an SSB is present.
Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques relate to improved methods, systems, devices, and apparatuses that support random-access occasion (RO) selection for reduced-capability (RedCap) user equipment (UEs). A RedCap UE operating in a half-duplex mode may use the techniques described herein to efficiently select an RO in which to transmit a random-access preamble based on a duration between a latest received downlink transmission and the RO satisfying a threshold duration. The UE may receive system information mapping a set of synchronization signal blocks (SSBs) to a set of ROs. The UE may then select an RO from the set of ROs in which to transmit the random-access preamble such that the UE has sufficient time to transition from a receive mode to a transmit mode to transmit the random-access preamble.
Abstract:
Methods, systems, and devices for wireless communications are described. In some cases, devices such as band limited (BL) or coverage enhancement (CE) user equipment (UE) having limited transmitting and receiving capability may operate using a subset of a system bandwidth of a carrier (e.g., narrowbands). To support frequency hopping or frequency diversity in transmissions, for example, such devices may utilize retuning when a resource allocation moves from a first narrowband to a second narrowband. Retuning, however, may create challenges when transmitting and receiving capability is limited. Aspects of this disclosure may support a flexible starting physical resource block (PRB) for indicating new resource allocations for BL or CE UEs. In some aspects, a UE is disclosed which may retune between consecutive transmission time intervals (TTIs) or subframes, for example, from a first tuning band to a second tuning band (e.g., a newly defined retuning narrowband).
Abstract:
Aspects of mitigating throughput degradation during wireless communication include determining that a first transmission signal fails decoding at a network entity due to transmit (TX) blanking when a user equipment (UE) supports dual subscriber identity module dual active (DSDA) and is operating in hybrid automatic repeat request (HARQ) with incremental redundancy; determining whether a first retransmission signal for the first transmission signal fails decoding at the network entity; and retransmitting the first transmission signal as a new transmission signal when a determination is made that the first retransmission signal for the first transmission signal fails decoding at the network entity.
Abstract:
A user equipment (UE) determines a first transmit power parameter for a primary carrier and a secondary carrier of a multi-carrier uplink, based on a first data power allocated for a first data type to be transmitted on the multi-carrier uplink. The UE determines a first maximum enhanced uplink transport format combination indicator (E-TFCI) for the primary carrier and the secondary carrier based on the first transmit power parameter. If the primary carrier or the secondary carrier has data of a second data type for transmission, the UE determines a second data power allocated for the first data type utilizing the first maximum E-TFCI as a reference E-TFCI. If a difference in value between the first data power and the second data power is less than a threshold value, the UE utilizes the first transmit power parameter for transmitting data on the primary carrier and the secondary carrier.
Abstract:
Methods, systems, and devices for wireless communications are described. A frame, scheduling instance, scheduling period etc. may include a set of downlink subframes and a set of uplink subframes. At least one control message transmitted in a downlink subframe may schedule a set of data messages in the downlink subframes of the frame. The downlink subframe may also include data messages scheduled by a control message of a previous frame. Further, feedback timings for data messages of the frame may be determined based on the corresponding control messages (e.g., from the current frame and the previous frame). Feedback responses corresponding to the data messages may be transmitted in a bundled manner in the set of uplink subframes. Using this cross-frame scheduling technique, the resources of a frame may be efficiently utilized.
Abstract:
Certain aspects of the present disclosure provide techniques for power savings for reduced capability devices. A method that may be performed by a user equipment (UE) includes receiving a shared bandwidth part (BWP) configuration and a group common BWP configuration. The group common BWP configuration indicates a group common BWP shared by a group of UEs, including the UE, having one or more common capabilities or a common UE type. The method includes communicating using the group common BWP based on the group common BWP configuration.
Abstract:
Certain aspects of the present disclosure provide techniques for power savings for reduced capability devices. A method that may be performed by a user equipment (UE) includes receiving a shared bandwidth part (BWP) configuration and a group common BWP configuration. The group common BWP configuration indicates a group common BWP shared by a group of UEs, including the UE, having one or more common capabilities or a common UE type. The method includes communicating using the group common BWP based on the group common BWP configuration.
Abstract:
Methods, systems, and devices for wireless communications are described to enable a base station to configure additional reference signals, which may be referred to as configured reference signals, to include in a transmission to a user equipment (UE). The UE may transmit a report to the base station, indicating a UE capability for supporting configured reference signals, and the base station may configure a pattern for the configured reference signals. The base station may transmit an indication of the pattern to the UE, where the indication may include one or more characteristics associated with the configured reference signals. The base station may transmit the configured reference signals to the UE according to the pattern, along with one or more baseline reference signals, within an associated transmission. The UE may use the configured reference signals and the baseline reference signals to receive a transmission from the base station.