Abstract:
Certain aspects of the present disclosure provide techniques for determining a spatial direction of a beam for retransmitting a wireless signal. A method that may be performed by a repeater includes receiving, at the repeater, a signal transmitted by a first node, the signal carrying data intended to be received by a second node. The method may also include determining, by the repeater, a beam direction for retransmitting the received signal to the second node, the beam direction determined based on an object detection process performed by the repeater. The method may also include transmitting, by the repeater to the second node, an amplified retransmission of the received signal using a beam having the determined beam direction.
Abstract:
Apparatus, methods, and computer-readable media for facilitating beam training with relay link are disclosed herein. An example method for wireless communication at a control node includes determining a first set of measurements associated with at least one set of beam pairs. In some examples, the at least one set of beam pairs is associated with a wireless backhaul link between a first wireless device and a relay device, a first relay access link portion between the first wireless device and the relay device, or a second relay access link portion between the relay device and at least one second wireless device. The example method also includes configuring at least one subset of beam pairs of the at least one set of beam pairs based on the first set of measurements. Additionally, the example method includes transmitting information indicating the at least one subset of beam pairs to the relay device.
Abstract:
One apparatus may determine a first set of parameters associated with a first RACH procedure, the first set of parameters being associated with beam failure recovery for a first UE in a cell. The apparatus may send the first set of parameters to the first UE. Another apparatus may receive the first set of parameters associated with a first RACH procedure. The other apparatus may receive, from the first apparatus, a second set of parameters associated with a second RACH procedure. The other apparatus may generate a RACH preamble based on the first set of parameters or based on the second set of parameters. The other apparatus may send, to the first apparatus, the generated RACH preamble.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for determining a maximum transport block size. In certain aspects, a method comprises receiving, from a user equipment (UE), information indicative of a size of a buffer at the UE for storing data received from the BS. The method further includes determining a maximum transport block size based on the size of the buffer at the UE and a number of hybrid automatic repeat request (HARQ) processes used by the BS to send data to the UE. The method further comprises transmitting a transport block with a size not exceeding the maximum transport block size to the UE.
Abstract:
Certain aspects of the present disclosure provide various appropriate frame structures, sweep sequences, and procedures that may assist in beam sweeping, tracking and recovery.
Abstract:
A method, an apparatus, and a computer program product for operating a user equipment (UE) are provided. The apparatus determines a first set of beamforming directions for communication with a base station (BS) in a first network, monitors for beams in a second set of beamforming directions for communication with a millimeter wave base station (mmW-BS) based on the determined first set of beamforming directions, where the second set of beamforming directions includes the first set of beamforming directions, and where the mmW-BS is in a second network having a higher carrier frequency than the first network, and establishes a communication link with the mmW-BS based on a beamforming direction in the second set of beamforming directions.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE transmits a beamformed broadcast request signal to a base station in a plurality of transmissions in transmit spatial directions of the UE, receives a beamformed broadcast response signal from the base station in a resource of a plurality of resources, and determines a preferred transmit spatial direction of the UE based on the resource in which the beamformed broadcast response signal is received. The apparatus may be a base station. The base station scans for a beamformed broadcast request signal from a UE, determines a preferred transmit spatial direction of transmit spatial directions of the UE, determines a resource of a plurality of resources for indicating the determined preferred transmit spatial direction, and transmits a beamformed broadcast response signal to the UE in the determined resource.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a repeater may identify one or more parameters for mechanical beam steering. The repeater may perform mechanical beam steering based at least in part on the one or more parameters. Numerous other aspects are provided.
Abstract:
A method, a computer-readable medium, and an apparatus are provided. The apparatus may be a repeater node. The apparatus may receive, at one or more first antennas of the node, a first signal via at least one first beam. The apparatus may measure, at one or more third antennas of the node, at least one of a power or a quality of at least one third beam. The at least one of the power or the quality of the at least one third beam may be measured at a same time as the first signal is received. The apparatus may forward, at one or more second antennas of the node, the first signal via at least one second beam.
Abstract:
This disclosure generally relates to systems, devices, apparatuses, products, and methods for wireless communication. For example, a communication system may include a repeater that relays communications between communication devices. The repeater determines a downlink gain value to use for one or more downlink initial access messages received at the repeater. The repeater determines an uplink gain value to use for one or more downlink initial access messages received at the repeater. The uplink gain value is based on the downlink gain value and a noise level related to a channel between the communication device and the repeater. The repeater receives a downlink initial access message, and applies the downlink gain value to the downlink initial access message. The repeater receives an uplink initial access message, and applies the uplink gain value to the uplink initial access message.