Abstract:
A system and method of video processing are disclosed. In a particular implementation, a device includes a frame buffer configured to receive a video frame sequence and to store the video frame sequence and a frame index for each frame of the video frame sequence. The device also includes a processor configured to compress a summary frame into an encoded file representative of the summary frame. The summary frame includes a first representation of an object at a first position in a first video frame associated with a first frame index of the video frame sequence. The summary frame further includes a second representation of an object at a second position in a second video frame associated with a second frame index associated with the video frame sequence. The device also includes a transmitter configured to output a notification signal associated with the summary frame.
Abstract:
An electronic device receives a plurality of images at different times while the device is operating in an image preview mode, and prior to a user-initiated image capture request, the electronic device generates a clean preview image that excludes one or more moving objects from the preview image.
Abstract:
A device (300) for displaying panoramic images includes an image sensor (315), a panoramic display module (345) and a display (325). The display (110, 200) displays an annular panorama view (120, 210). The annular view (120, 210) may be an incomplete annulus for illustrating a missing view angle (126) from an incomplete panoramic image. The display (200) further includes a window (220) and a high resolution display portion (240). The window (220) bounds a portion (230) of the annular view (210). The high resolution display portion (240) displays a high resolution image corresponding to the portion (230) of the annular view (210). The window (220) is movable around the annular view (210). A size of the window (220) or the high resolution display portion (240) is adjustable. A method for generating a panoramic image is also provided.
Abstract:
An apparatus, system, and method for examining authenticity of printed material and distinguishing between original printed material and counterfeit printed material is disclosed. In one embodiment, the method is performed by a mobile device. The mobile device recognizes a reference point on a page of the printed material, computes a color balance ratio for that reference point, and compares the computed color balance ratio to an expected value for original printed material. Based on the comparison between the computed color balance ratio and the expected value, a determination is made as to the authenticity of the printed material. If the printed material is authentic, the mobile device may provide supplementary, complementary and/or additional information and content, for example, information related to the page or chapter of the printed material. If the printed material is not authentic, the mobile device may inhibit the presentation of additional material.