Abstract:
An apparatus includes a processor configured to receive one or more media signals associated with a scene. The processor is also configured to identify a spatial location in the scene for each source of the one or more media signals. The processor is further configured to identify audio content for each media signal of the one or more media signals. The processor is also configured to determine one or more candidate spatial locations in the scene based on the identified spatial locations. The processor is further configured to generate audio to playback as virtual sounds that originate from the one or more candidate spatial locations.
Abstract:
Methods, systems, and devices for auditory enhancement are described. A device may receive a respective auditory signal at each of a set of microphones, where each auditory signal includes a respective representation of a target auditory component and one or more noise artifacts. The device may identify a directionality associated with a source of the target auditory component (e.g., based on an arrangement of the multiple microphones). The device may determine a distribution function for the target auditory component based at least in part on the directionality associated with the source and on the received plurality of auditory signals. The device may generate an estimate of the target auditory component based at least in part on the distribution function and output the estimate of the target auditory component.
Abstract:
A drone system and method. Audio signals are received via one or more microphones positioned relative to a location on a drone and one or more of the audio signals are identified as of interest. Flight characteristics of the drone are then controlled based on the audio signals that are of interest.
Abstract:
Adaptations for in-vehicle adaptive noise-canceling (ANC) technology are described. An example in-vehicle audio system includes ANC circuitry coupled to one or more error microphones. The ANC circuitry being configured to process audio data received from the one or more error microphones to determine a distinction between the engine-external noise and the engine noise. The ANC circuitry is further configured to alter, based on the distinction determined between the engine-external noise and the engine noise, a convergence between two or more ANC filters to form altered-convergence ANC filtering coefficients.
Abstract:
A multichannel acoustic system (MAS) comprises an arrangement of microphones, loudspeakers, and filters along with a multichannel acoustic processor (MAP) and other components to together provide and enhance the auditory experience of persons in a shared acoustic space such as, for example, the driver and other passengers in an automobile. Driver-specific features such as navigation and auditory feedback cues are described, as individual auditory customizations and collective communications both within the shared acoustic space as well as with other individuals not located in the space via enhanced conference call facilities.
Abstract:
A drone system and method. Audio signals are received via one or more microphones positioned relative to a location on a drone and one or more of the audio signals are identified as of interest. Flight characteristics of the drone are then controlled based on the audio signals that are of interest.
Abstract:
An accessory device having multiple speakers and/or microphones to perform a number of audio functions, for use with mobile devices, are provided. The audio transducers (e.g., microphones and/or speakers) may be housed in one or more extendable and/or rotationally adjustable arms. To compensate for the unwanted signal feedback between the speakers and microphones, acoustic echo cancellation may be implemented to determine the proper distance and relative location between the speakers and microphones. Acoustic echo cancellation removes the echo from voice communications to improve the quality of the sound. The removal of the unwanted signals captured by the microphones may be accomplished by characterizing the audio signal paths from the speakers to the microphones (speaker-to-microphone path distance profile), including the distance and relative location between the speakers and microphones. The optimal distance and relative location between the speakers and microphones is provided to the user to optimize performance.
Abstract:
A method of generating audio output includes displaying a graphical user interface (GUI) at a user device. The GUI represents an area having multiple regions and multiple audio capture devices are located in the area. The method also includes receiving audio data from the multiple audio capture devices. The method further includes receiving an input indicating a selected region of the multiple regions. The method also includes generating, at the user device, audio output based on audio data from a subset of the multiple audio capture devices. Each audio capture device in the subset is located in the selected region.
Abstract:
Disclosed is a feature extraction and classification methodology wherein audio data is gathered in a target environment under varying conditions. From this collected data, corresponding features are extracted, labeled with appropriate filters (e.g., audio event descriptions), and used for training deep neural networks (DNNs) to extract underlying target audio events from unlabeled training data. Once trained, these DNNs are used to predict underlying events in noisy audio to extract therefrom features that enable the separation of the underlying audio events from the noisy components thereof.
Abstract:
Techniques for processing directionally-encoded audio to account for spatial characteristics of a listener playback environment are disclosed. The directionally-encoded audio data includes spatial information indicative of one or more directions of sound sources in an audio scene. The audio data is modified based on input data identifying the spatial characteristics of the playback environment. The spatial characteristics may correspond to actual loudspeaker locations in the playback environment. The directionally-encoded audio may also be processed to permit focusing/defocusing on sound sources or particular directions in an audio scene. The disclosed techniques may allow a recorded audio scene to be more accurately reproduced at playback time, regardless of the output loudspeaker setup. Another advantage is that a user may dynamically configure audio data so that it better conforms to the user's particular loudspeaker layouts and/or the user's desired focus on particular subjects or areas in an audio scene.