SELECTIVE BACKPROPAGATION
    12.
    发明申请

    公开(公告)号:US20170091619A1

    公开(公告)日:2017-03-30

    申请号:US15081780

    申请日:2016-03-25

    CPC classification number: G06N3/084 G06K9/4628 G06N3/0472

    Abstract: The balance of training data between classes for a machine learning model is modified. Adjustments are made at the gradient stage where selective backpropagation is utilized to modify a cost function to adjust or selectively apply the gradient based on the class example frequency in the data sets. The factor for modifying the gradient may be determined based on a ratio of the number of examples of the class with a fewest members to the number of examples of a present class. The gradient associated with the present class is modified based on the above determined factor.

    CONFIGURING SPARSE NEURONAL NETWORKS
    13.
    发明申请
    CONFIGURING SPARSE NEURONAL NETWORKS 审中-公开
    配置稀疏神经网络

    公开(公告)号:US20150206048A1

    公开(公告)日:2015-07-23

    申请号:US14449101

    申请日:2014-07-31

    CPC classification number: G06N3/08 G06N3/0481 G06N3/049 G06N3/082

    Abstract: A method for selecting a reduced number of model neurons in a neural network includes generating a first sparse set of non-zero decoding vectors. Each of the decoding vector is associated with a synapse between a first neuron layer and a second neuron layer. The method further includes implementing the neural network only with selected model neurons in the first neuron layer associated with the non-zero decoding vectors.

    Abstract translation: 用于在神经网络中选择减少数量的模型神经元的方法包括生成非零解码矢量的第一稀疏集合。 每个解码矢量与第一神经元层和第二神经元层之间的突触相关联。 该方法还包括仅在与非零解码矢量相关联的第一神经元层中实施神经网络与选定的模型神经元。

    SPIKE TIME WINDOWING FOR IMPLEMENTING SPIKE-TIMING DEPENDENT PLASTICITY (STDP)
    14.
    发明申请
    SPIKE TIME WINDOWING FOR IMPLEMENTING SPIKE-TIMING DEPENDENT PLASTICITY (STDP) 审中-公开
    SPIKE时间窗口执行SPIKE-TIMING相关塑料(STDP)

    公开(公告)号:US20140351186A1

    公开(公告)日:2014-11-27

    申请号:US14084302

    申请日:2013-11-19

    CPC classification number: G06N3/08 G06N3/049 G06N3/10

    Abstract: Methods and apparatus are provided for implementing spike-timing dependent plasticity (STDP) using windowing of spikes. One example method for operating an artificial nervous system generally includes recording spike times for a first artificial neuron, recording spike times for a second artificial neuron coupled to the first artificial neuron via a synapse, processing spikes for the second artificial neuron according to a window based at least in part on the spike times for the first artificial neuron, and updating a parameter (e.g., a weight or a delay) of the synapse based on the processing.

    Abstract translation: 提供了使用尖峰窗口来实现尖峰时序相关可塑性(STDP)的方法和装置。 用于操作人造神经系统的一个示例性方法通常包括记录第一人造神经元的尖峰时间,通过突触记录耦合到第一人造神经元的第二人造神经元的尖峰时间,根据基于窗口的第二人造神经元的尖峰 至少部分地基于第一人造神经元的尖峰时间,以及基于该处理更新突触的参数(例如,重量或延迟)。

    MEDIA CLASSIFICATION
    16.
    发明申请
    MEDIA CLASSIFICATION 审中-公开
    媒体分类

    公开(公告)号:US20170032247A1

    公开(公告)日:2017-02-02

    申请号:US14859082

    申请日:2015-09-18

    CPC classification number: G06N3/088 G06K9/6265 G06N3/02 G06N3/04 G06N20/00

    Abstract: Multi-label classification is improved by determining thresholds and/or scale factors. Selecting thresholds for multi-label classification includes sorting a set of label scores associated with a first label to create an ordered list. Precision and recall values are calculated corresponding to a set of candidate thresholds from score values. The threshold is selected from the candidate thresholds for the first label based on target precision values or recall values. A scale factor is also selected for an activation function for multi-label classification where a metric of scores within a range is calculated. The scale factor is adjusted when the metric of scores are not within the range.

    Abstract translation: 通过确定阈值和/或比例因子来提高多标签分类。 选择多标签分类的阈值包括对与第一标签相关联的一组标签分数进行排序以创建有序列表。 根据得分值对应于一组候选阈值计算精确度和回忆值。 基于目标精度值或召回值,从第一标签的候选阈值中选择阈值。 还为多标签分类的激活功能选择比例因子,其中计算范围内的分数的度量。 当分数的度量不在该范围内时,调整比例因子。

    ONLINE TRAINING FOR OBJECT RECOGNITION SYSTEM
    17.
    发明申请
    ONLINE TRAINING FOR OBJECT RECOGNITION SYSTEM 审中-公开
    对象识别系统的在线训练

    公开(公告)号:US20160267395A1

    公开(公告)日:2016-09-15

    申请号:US14856481

    申请日:2015-09-16

    Abstract: A method of online training of a classifier includes determining a distance from one or more feature vectors of an object to a first predetermined decision boundary established during off-line training for the classifier. The method also includes updating a decision rule as a function of the distance. The method further includes classifying a future example based on the updated decision rule.

    Abstract translation: 分类器的在线训练的方法包括确定从物体的一个或多个特征向量到在分类器的离线训练期间建立的第一预定判定边界的距离。 该方法还包括根据距离更新决策规则。 该方法还包括基于更新的决策规则对未来示例进行分类。

    CUSTOMIZED CLASSIFIER OVER COMMON FEATURES
    19.
    发明申请
    CUSTOMIZED CLASSIFIER OVER COMMON FEATURES 审中-公开
    自定义分类器通用功能

    公开(公告)号:US20150324688A1

    公开(公告)日:2015-11-12

    申请号:US14483054

    申请日:2014-09-10

    CPC classification number: G06N3/049 G06N3/0454 G06N3/08

    Abstract: A method of generating a classifier model includes distributing a common feature model to two or more users. Multiple classifiers are trained on top of the common feature model. The method further includes distributing a first classifier of the multiple classifiers to a first user and a second classifier of the multiple classifiers to a second user.

    Abstract translation: 生成分类器模型的方法包括将公共特征模型分发给两个或更多个用户。 在通用特征模型之上训练多个分类器。 该方法还包括将多个分类器的第一分类器分配给第一用户,并将多个分类器的第二分类器分配给第二用户。

    DISTRIBUTED MODEL LEARNING
    20.
    发明申请
    DISTRIBUTED MODEL LEARNING 审中-公开
    分布式模型学习

    公开(公告)号:US20150324686A1

    公开(公告)日:2015-11-12

    申请号:US14464558

    申请日:2014-08-20

    CPC classification number: G06N20/00 G06N3/08

    Abstract: A method of learning a model includes receiving model updates from one or more users. The method also includes computing an updated model based on a previous model and the model updates. The method further includes transmitting data related to a subset of the updated model to the a user(s) based on the updated model.

    Abstract translation: 学习模型的方法包括从一个或多个用户接收模型更新。 该方法还包括基于先前的模型和模型更新来计算更新的模型。 所述方法还包括基于所更新的模型向所述用户发送与所述更新的模型的子集有关的数据。

Patent Agency Ranking