Abstract:
A method for invariantly representing an object using a spiking neural network includes representing the object by a spike sequence. The method also includes determining a reference feature of the object representation. The method further includes transforming the object representation to a canonical form based on the reference feature.
Abstract:
A method of blink and averted gaze avoidance with a camera includes detecting an averted gaze of a subject and/or one or more closed eyes of the subject in response to receiving an input to actuate a camera shutter. The method also includes scheduling actuation of the camera shutter to a future estimated time period to capture an image of the subject when a gaze direction of the subject is centered on the camera and/or both eyes of the subject are open.
Abstract:
A method of quantizing a floating point machine learning network to obtain a fixed point machine learning network using a quantizer may include selecting at least one moment of an input distribution of the floating point machine learning network. The method may also include determining quantizer parameters for quantizing values of the floating point machine learning network based at least in part on the at least one selected moment of the input distribution of the floating point machine learning network to obtain corresponding values of the fixed point machine learning network.
Abstract:
A method for classifying an object includes applying multiple confidence values to multiple objects. The method also includes determining a metric based on the multiple confidence values. The method further includes determining a classification of a first object from the multiple objects based on a knowledge-graph when the metric is above a threshold.
Abstract:
A method of detecting unknown classes is presented and includes generating a first classifier for multiple first classes. In one configuration, an output of the first classifier has a dimension of at least two. The method also includes designing a second classifier to receive the output of the first classifier to decide whether input data belongs to the multiple first classes or at least one second class.
Abstract:
A method of frequency discrimination associated with the Doppler effect is presented. The method includes mapping a first signal to a first plurality of frequency bins and a second signal to a second plurality of frequency bins. The first signal and the second signal corresponding to different times. The method also includes firing a first plurality of neurons based on contents of the first plurality of frequency bins and firing a second plurality of neurons based on contents of the second plurality of frequency bins.
Abstract:
A method, a computer-readable medium, and an apparatus for compressing a neural network with an unlabeled data set are provided. The apparatus may generate a first set of consecutive layers for the neural network. The first set of consecutive layers may share inputs with a second set of consecutive layers of the neural network. The apparatus may adjust weights associated with the first set of consecutive layers based on a function the difference between a first set of output values from the first set of consecutive layers and a second set of output values from the second set of consecutive layers in response to the unlabeled data set. The apparatus may remove the second set of consecutive layers from the neural network when the function of the difference between the first set of output values and the second set of output values satisfies a threshold.
Abstract:
Computing a non-linear function ƒ(x) in hardware or embedded systems can be complex and resource intensive. In one or more aspects of the disclosure, a method, a computer-readable medium, and an apparatus are provided for computing a non-linear function ƒ(x) accurately and efficiently in hardware using look-up tables (LUTs) and interpolation or extrapolation. The apparatus may be a processor. The processor computes a non-linear function ƒ(x) for an input variable x, where ƒ(x)=g(y(x),z(x)). The processor determines an integer n by determining a position of a most significant bit (MSB) of an input variable x. In addition, the processor determines a value for y(x) based on a first look-up table and the determined integer n. Also, the processor determines a value for z(x) based on n and the input variable x, and based on a second look-up table. Further, the processor computes ƒ(x) based on the determined values for y(x) and z(x).
Abstract:
A scanning device generally produces an image having a uniform resolution throughout a target region. To improve radar scanning/lidar scanning, an efficient scan approach to enable a radar device/lidar device to adoptively perform a scan of a target region based on interested regions and/or an adjustable resolution. The apparatus may be a scanning device for scanning. The apparatus performs a first scan over a target region to obtain a plurality of first scan samples at a plurality of locations within the target region. The apparatus generates a saliency map of the target region based on signal intensities of the plurality of first scan samples. The apparatus determines a salient region within the target region based on the saliency map. The apparatus performs at least one second scan over the salient region to obtain at least one second scan sample in the salient region.
Abstract:
An intelligent camera network cooperatively acquires images over a wireless network. The network automatically captures images based on a trigger. The trigger may include messages from other image capturing devices. A first image capture devices is triggered to acquire an image based on a message from at least one other image capture device.