Abstract:
Disclosed are a system, apparatus, and method for in-situ creation of planar natural feature targets. In one embodiment, a planar target is initialized from a single first reference image one or more subsequent images are processed. In one embodiment, the planar target is tracked in six degrees of freedom upon the processing of the one or more subsequent images and a second reference image is selected from the processed one or more subsequent images. In one embodiment, upon selecting the second reference image the planar target is refined to a more accurate planar target.
Abstract:
A system and method is described herein for solving for surface normals of objects in the scene observed in a video stream. The system and method may include sampling the video stream to generate a set of keyframes; generating hypothesis surface normals for a set of mappoints in each of the keyframes; warping patches of corresponding mappoints in a first keyframe to the viewpoint of a second keyframe with a warping matrix computed from each of the hypothesis surface normals; scoring warping errors between each hypothesis surface normal in the two keyframes; and discarding hypothesis surface normals with high warping errors between the first and second keyframes.
Abstract:
Method, mobile device, computer program product and apparatus for performing a search are disclosed. The method of performing a search comprises receiving one or more images of an environment in view of a mobile device, generating a simultaneous localization and mapping of the environment using the one or more images, wherein the simultaneous localization and mapping of the environment comprises a plurality of map points representing a plurality of surfaces in a three dimensional coordinate system of the environment, sending a set of the plurality of map points as a search query to a server, receiving a query response from the server, and identifying an object in the environment based at least in part on the query response.
Abstract:
Disclosed are a system, apparatus, and method for performing occlusion handling for simultaneous localization and mapping. Occluded map points may be detected according to a depth-mask created according to an image keyframe. Dividing a scene into sections may optimize the depth-mask. Size of depth-mask points may be adjusted according to intensity. Visibility may be verified with an optimized subset of possible map points. Visibility may be propagated to nearby points in response to determining an initial visibility of a first point's surrounding image patch. Visibility may also be organized and optimized according to a grid.
Abstract:
Disclosed are a system, apparatus, and method for depth and color camera image synchronization. Depth and color camera input images are received or otherwise obtained unsynchronized and without associated creation timestamps. An image of one type is compared with an image of a different type to determine a match for synchronization. Matches may be determined according to edge detection or depth coordinate detection. When a match is determined a synchronized pair is formed for processing within an augmented reality output. Optionally the synchronized pair may be transformed to improve the match between the image pair.
Abstract:
Disclosed are a system, apparatus, and method for depth camera image re-mapping. A depth camera image from a depth camera may be received and a depth camera's physical position may be determined The depth camera's physical position may be determined relative to an other physical position, such as the physical position of a color camera. The depth camera image may be transformed according to a processing order associated with the other physical position.
Abstract:
Embodiments disclosed facilitate resource utilization efficiencies in Mobile Stations (MS) during 3D reconstruction. In some embodiments, camera pose information for a first color image captured by a camera on an MS may be obtained and a determination may be made whether to extend or update a first 3-Dimensional (3D) model of an environment being modeled by the MS based, in part, on the first color image and associated camera pose information. The depth sensor, which provides depth information for images captured by the camera, may be disabled, when the first 3D model is not extended or updated.
Abstract:
Disclosed is a computing device that can perform automatic image rectification for a visual search. A method implemented at a computing device includes receiving one or more images from an image capture device, storing the one or more images with the computing device, building a three dimensional (3D) geometric model for one or more potential objects of interest within an environment based on at least one image of the one or more images, and automatically creating at least one rectified image having at least one potential object of interest for a visual search.
Abstract:
Systems, apparatus and methods to create a database by a device (such as a server) and to use the database by a mobile device for detecting a planar target are presented. The database allows recognition of a planar target by a mobile device from steeper angles with minimum impact on runtime. The database is created from at least one warped view of the planar target. For example, a database may contain keypoints and descriptors from a non-warped view and also from one or more warped views. The database may be pruned by removing keypoints and corresponding descriptors of one image (e.g., a warped image) overlapping with similar or identical keypoints and descriptors of another image (e.g., a non-warped image).
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented for use by an electronic device to track objects across two or more digital images. For example, an electronic device may generate a plurality of warped patches corresponding to a reference patch of a reference image, and combine two or more warped patches to form a blurred warped patch corresponding to the reference patch with a motion blur effect applied to a digital representation corresponding to a keypoint of an object to be tracked.