Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a network node, capability information indicating one or more sub-band full-duplex (SBFD) support conditions for the UE. The UE may communicate with the network node based at least in part on the one or more SBFD support conditions for the UE. Numerous other aspects are described.
Abstract:
A user equipment (UE) may communicate using different radio access technologies on adjacent frequency bands. The UE may determine that the UE is not receiving wireless signals for a second radio access technology that utilizes a second frequency band adjacent to a first frequency band for a first radio access technology. The UE may place a transmitter of the UE in a filter bypass mode in which a transmit signal bypasses a transmit filter for the first radio access technology in response to determining that the wireless signals for the second radio access technology are not received. The UE may scan, using a receiver for the second radio access technology, while in the filter bypass mode, the second frequency band for a signal for the second radio access technology between scheduled transmissions for the first radio access technology.
Abstract:
A user equipment (UE) provides a capability-type indication for each of one or more UE capabilities. Each indication corresponds to a capability type, the type being one of a persistent capability or a second-type capability. Information corresponding to the capability-type indication may be provided to an eNB associated with the UE by RRC signaling. The UE provides a capability-change indication for each of one or more UE capabilities that has changed capability type. Information corresponding to the capability-change indication may be provided to an eNB by lower layer signaling, RRC signaling, or a combination thereof. Capability change information may be sent to the eNB autonomously by the UE, or in response to an inquiry from the eNB. The inquiry from the eNB may be triggered by the UE.
Abstract:
A method of beacon detection performed by a small cell device includes: exchanging beacon parameters with a user equipment (UE); entering a low power mode after exchanging the beacon parameters with the UE; receiving, from the UE, a beacon in a random access channel (RACH) preamble containing the beacon parameters while in the low power mode; entering a high power mode in response to receiving the beacon; and associating with the UE while in the high power mode. The method of beacon detection allows a small cell device to transition from a low power mode to a high power mode in an efficient manner. The transmission may be triggered by a user equipment that is entering a service area of the small cell device.
Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
A system, method, and computer device that allow a wireless communication device to selectively bundle messages in an access channel communication packet being sent to another computer device on the wireless communication network, such as a base station are disclosed. The bundled messages are typically sent in response to a request sent to the wireless communication device for response to a specific event, such as the setup of a group communication call. The receiving computer device determines if the access channel communication packet contains data indicating one or more bundled messages are therewithin such that resources only then will expended to review the bundled messages to check for the availability of the requested resources.
Abstract:
A method of managing uplink interference at a base station includes: detecting uplink interference caused by one or more inter-cell user equipments to an uplink channel of a base station, the one or more inter-cell user equipments associated with a neighboring base station; receiving, at the base station, assistance information from the neighboring base station, the assistance information comprising a parameter list of ongoing transmissions by the one or more user equipments associated with the neighboring base station; and performing uplink interference cancellation, at the base station, on at least a portion of a received signal based on the assistance information to generate a resulting signal.
Abstract:
An apparatus for wireless communication obtains a first metric of a cell based on signals received by a WWAN radio tuned to a common frequency, and a second metric of the cell based on signals received by a WLAN radio tuned to the common frequency. The apparatus determines a calibration factor based on the first and second metrics, and performs cell search and cell measurement based on the calibration factor and signals received by the WLAN radio tuned to a target frequency. The common frequency may be a serving frequency of the WWAN, in which case the first and second metrics are one of frequency or power metrics and the calibration factor is one of a frequency offset and a power offset. The common frequency may also be a target frequency for inter-frequency measurements of the WWAN, in which case the calibration factor is based primarily on power measurements.
Abstract:
Aspects of the present disclosure provide a user equipment (UE) assisted synchronization method in which a small cell can request and obtain time and frequency offset information from one or more UEs currently associated with the small cell, and the small cell can discipline its clock drift accordingly.
Abstract:
Techniques for compensating for self-induced interference in a small cell base station are provided. The techniques include detecting control signals from a neighboring base station associated with a wireless communication network, the control signals being transmitted by the neighboring base station at predetermined intervals, and compensating for self-induced interference caused by a transmitter of the small cell base station transmitting during the predetermined intervals in which control signals are received from the neighboring base station and the transmitter of the small cell base station is transmitting data.