Abstract:
A light-emitting apparatus includes a light-emitting device and an excitation light source. The light-emitting device includes a photoluminescent layer, a light-transmissive layer. At least one of the photoluminescent layer and the light-transmissive layer has a submicron structure having at least projections or recesses. Light emitted from the photoluminescent layer includes first light having a wavelength λa in air. The distance Dint between adjacent projections or recesses and the refractive index nwav-a of the photoluminescent layer for the first light satisfy λa/nwav-a
Abstract:
A light-emitting device includes a photoluminescent layer that emits light containing first light, a light-transmissive layer located on or near the photoluminescent layer, a low-refractive-index layer and a high-refractive-index layer. A submicron structure is defined on the photoluminescent layer and/or the light-transmissive layer. The low-refractive-index layer is located on or near the photoluminescent layer so that the photoluminescent layer is located between the low-refractive-index layer and light-transmissive layer. The high-refractive-index layer is located on or near the low-refractive-index layer so that the low-refractive-index layer is located between the high-refractive-index layer and the photoluminescent layer. The submicron structure includes at least projections or recesses and satisfies the following relationship: λa/nwav-a
Abstract:
A light-emitting device includes a photoluminescent layer that emits light containing first light, a light-transmissive layer located on or near the photoluminescent layer, and one or more reflectors. A submicron structure is defined on at least one of the photoluminescent layer and the light-transmissive layer. The one or more reflector are located outside the submicron structure. The submicron structure includes at least projections or recesses and satisfies the following relationship: λa/nwav-a
Abstract:
An optical sheet includes a light scattering layer that scatters at least a part of light incident thereon by diffraction and that includes first and second areas. Each first area is a projection. Each second area is a recess. Each of at least the projections or the recesses has a tapered shape. When a center wavelength of the light incident on the light scattering layer is λ and a refractive index of a layer that is in contact with the light scattering layer at a light emission side is n, spatial frequency components of a pattern formed by the first and second areas have a maximum peak at a spatial frequency in a range of 0.068/(λ×n) or more and 2.8/(λ×n) or less.
Abstract:
A distance measuring apparatus includes a light source that emits a light beam, a scanning device that performs beam scanning where an emission direction of the light beam is changed, a photodetector that receives light reflected from measurement points on a target irradiated with the light beam and that outputs detection signals, a processing circuit that calculates distances to the measurement points on a basis of the detection signals, and a control circuit that controls the scanning device. The control circuit determines a step angle of the beam scanning in such a way as to reduce differences in density of the measurement points between areas of the target.
Abstract:
A measurement system includes a light source, an optical detector, and a processing circuit. The light source emits irradiation light to be applied to multiple measurement points included in at least one evaluation region of a surface of an object. The optical detector receives reflected light returned from the multiple measurement points and outputs a detection signal. The processing circuit calculates and outputs a roughness parameter regarding an uneven shape of the at least one evaluation region, based on the detection signal. The processing circuit corrects the roughness parameter in accordance with an angle of incidence of the irradiation light incident on the at least one evaluation region, a measurement distance in the at least one evaluation region, or intensity of received light obtained as a result of the at least one evaluation region being irradiated with the irradiation light.
Abstract:
An optical device includes: a first multilayer reflective film mirror; a second multilayer reflective film mirror facing the first multilayer reflective film mirror; an optical waveguide layer that is located between the first and second multilayer reflective film mirrors and propagates light whose wavelength in a vacuum is λ; and a first transparent electrode layer located at at least one position of a position between the first multilayer reflective film mirror and the optical waveguide layer, a position between the second multilayer reflective film mirror and the optical waveguide layer, a position between two adjacent layers included in the first multilayer reflective film mirror, and a position between two adjacent layers included in the second multilayer reflective film mirror. The transmittance of the first multilayer reflective film mirror for the light is higher than the transmittance of the second multilayer reflective film mirror for the light.
Abstract:
An optical scanning device includes: a first mirror; a second mirror opposed to the first mirror; two non-waveguide regions sandwiched between the first mirror and the second mirror; an optical waveguide region disposed between the two non-waveguide regions; and two intermediate regions. The average refractive index of the optical waveguide region is higher than the average refractive index of each intermediate region. The average refractive index of each intermediate region is higher than the average refractive index of each non-waveguide region. The first mirror allows part of light propagating through the optical waveguide region to be emitted as emission light in a third direction. By changing the refractive index and/or thickness of the optical waveguide region, the third direction, which is the emission direction of the emission light, is changed.
Abstract:
A light-emitting device comprises a layered structure between a first layer and a second layer. The first first layer has a refractive index n1 for first light having a wavelength λa in air. The second layer has a refractive index n2 for the first light. The layered structure comprises: a photoluminescent layer having a first surface facing the first layer and a second surface facing the second layer; and a surface structure disposed on at least one selected from the group consisting of the first surface and the second surface of the photoluminescent layer. The refractive index n1 and the refractive index n2 are lower than a refractive index nwav-a of the photoluminescent layer for the first light. The layered structure has an effective thickness to more strongly emit TE polarized light than TM polarized light.
Abstract:
A light-emitting device includes; a photoluminescent layer that emits light; and a light-transmissive layer on which the emitted light is to be incident. At least one of the photoluminescent layer and the light-transmissive layer defines a surface structure. The surface structure has projections and/or recesses to limit a directional angle of the emitted light. The photoluminescent layer and the light-transmissive layer are curved.