EFFICIENT, IN-MEMORY, RELATIONAL REPRESENTATION FOR HETEROGENEOUS GRAPHS

    公开(公告)号:US20210279282A1

    公开(公告)日:2021-09-09

    申请号:US17330046

    申请日:2021-05-25

    Abstract: Techniques are provided herein for efficient representation of heterogeneous graphs in memory. In an embodiment, vertices and edges of the graph are segregated by type. Each property of a type of vertex or edge has values stored in a respective vector. Directed or undirected edges of a same type are stored in compressed sparse row (CSR) format. The CSR format is more or less repeated for edge traversal in either forward or reverse direction. An edge map translates edge offsets obtained from traversal in the reverse direction for use with data structures that expect edge offsets in the forward direction. Subsequent filtration and/or traversal by type or property of vertex or edge entails minimal data access and maximal data locality, thereby increasing efficient use of the graph.

    VECTORIZED HASH TABLES
    15.
    发明申请

    公开(公告)号:US20210271710A1

    公开(公告)日:2021-09-02

    申请号:US16803819

    申请日:2020-02-27

    Abstract: Techniques are described herein for a vectorized hash table that uses very efficient grow and insert techniques. A single-probe hash table is grown via vectorized instructions that split each bucket, of the hash table, into a respective upper and lower bucket of the expanded hash table. Further, vacant slots are indicated using a vacant-slot-indicator value, e.g., ‘0’, and all vacant slots follow to the right of all occupied slots in a bucket. A vectorized compare instruction determines whether a value is already in the bucket. If not, the vectorized compare instruction is also used to determine whether the bucket has a vacant slot based on whether the bucket contains the vacant-slot-indicator value. To insert the value into the bucket, vectorized instructions are used to shift the values in the bucket to the right by one slot and to insert the new value into the left-most slot.

    INFERRING INTRA PACKAGE AND MODULE DEPENDENCIES

    公开(公告)号:US20210173621A1

    公开(公告)日:2021-06-10

    申请号:US16703499

    申请日:2019-12-04

    Abstract: Herein are machine learning (ML) feature processing and analytic techniques to detect anomalies in parse trees of logic statements, database queries, logic scripts, compilation units of general-purpose programing language, extensible markup language (XML), JAVASCRIPT object notation (JSON), and document object models (DOM). In an embodiment, a computer identifies an operational trace that contains multiple parse trees. Values of explicit features are generated from a single respective parse tree of the multiple parse trees of the operational trace. Values of implicit features are generated from more than one respective parse tree of the multiple parse trees of the operational trace. The explicit and implicit features are stored into a same feature vector. With the feature vector as input, an ML model detects whether or not the operational trace is anomalous, based on the explicit features of each parse tree of the operational trace and the implicit features of multiple parse trees of the operational trace.

    Efficient method for subgraph pattern matching

    公开(公告)号:US10896223B2

    公开(公告)日:2021-01-19

    申请号:US16223805

    申请日:2018-12-18

    Abstract: Techniques herein optimize subgraph pattern matching. A computer receives a graph vertex array and a graph edge array. Each vertex and each edge has labels. The computer stores an array of index entries and an array of edge label sets. Each index entry corresponds to a respective vertex originating an edge and associates an offset of the edge with an offset of the respective vertex. Each edge label set contains labels of a respective edge. The computer selects a candidate subset of edges originating at a current vertex. The edge labels of each candidate edge of the candidate subset include a same particular query edge labels. The computer selects the candidate subset based on the index array and afterwards selects a result subset of vertices from among the terminating vertices of the candidate edges. The labels of each vertex of the result subset include a same particular query vertex labels.

    AUTOMATIC GENERATION OF MULTI-SOURCE BREADTH-FIRST SEARCH FROM HIGH-LEVEL GRAPH LANGUAGE FOR DISTRIBUTED GRAPH PROCESSING SYSTEMS

    公开(公告)号:US20200133663A1

    公开(公告)日:2020-04-30

    申请号:US16176853

    申请日:2018-10-31

    Abstract: Techniques are described herein for automatic generation of multi-source breadth-first search (MS-BFS) from high-level graph processing language that can be executed in a distributed computing environment. In an embodiment, a method involves a computer analyzing original software instructions. The original software instructions are configured to perform multiple breadth-first searches to determine a particular result. Each breadth-first search originates at each of a subset of vertices of a graph. Each breadth-first search is encoded for independent execution. Based on the analyzing, the computer generates transformed software instructions configured to perform a MS-BFS to determine the particular result. Each of the subset of vertices is a source of the MS-BFS. In an embodiment, the second plurality of software instructions comprises a node iteration loop and a neighbor iteration loop, and the plurality of vertices of the distributed graph comprise active vertices and neighbor vertices. The node iteration loop is configured to iterate once per each active vertex of the plurality of vertices of the distributed graph, and the node iteration loop is configured to determine the particular result. The neighbor iteration loop is configured to iterate once per each active vertex of the plurality of vertices of the distributed graph, and each iteration of the neighbor iteration loop is configured to activate one or more neighbor vertices of the plurality of vertices for the following iteration of the neighbor iteration loop.

Patent Agency Ranking