Abstract:
Techniques are provided for enabling a requesting entity to retrieve data that is managed by a database server instance from the volatile memory of a server machine that is executing the database server instance. The techniques allow the requesting entity to retrieve the data from the volatile memory of the host server machine without involving the database server instance in the retrieval operation. Because the retrieval does not involve the database server instance, the retrieval may succeed even when the database server instance has stalled or become unresponsive. In addition, direct retrieval of data using the techniques described herein will often be faster and more efficient than retrieval of the same information through conventional interaction with the database server instance.
Abstract:
Techniques are described for maintaining coherency of a portion of a database object mirrored in a particular node of a database. The techniques involve maintaining invalidation logs which identify transactions that have committed to a database. Based on the invalidation logs, the particular node generates invalid-row ID metadata which identifies, for each system change number, one or more rows that are not transactionally consistent with data stored in the database object as of said system change number.
Abstract:
A hashing scheme includes a cache-friendly, latchless, non-blocking dynamically resizable hash index with constant-time lookup operations that is also amenable to fast lookups via remote memory access. Specifically, the hashing scheme provides each of the following features: latchless reads, fine grained lightweight locks for writers, non-blocking dynamic resizability, cache-friendly access, constant-time lookup operations, amenable to remote memory access via RDMA protocol through one sided read operations, as well as non-RDMA access.
Abstract:
A minimum value (MV) is computed for start timestamps that each correspond to an uncommitted transaction. In an embodiment, the MV is computed for a pluggable database that is open on at least first and second instances of a database. The MV is computed for the first instance as of a first current timestamp (CT). The MV and the first CT are communicated to a second instance that has a second CT. If the first and second CTs are equal, the second instance store the MV. If the first CT is bigger, the second CT also becomes equal to the first CT. If the first CT is smaller, the MV is discarded, and the first CT becomes equal to the second CT. In an embodiment, if the MV remains unchanged for a predetermined time period, a start timestamp corresponding to the MV is advanced to a current or future timestamp.
Abstract:
Techniques are described herein for generating and using in-memory data structures to represent columns in data block sets. In an embodiment, a database management system (DBMS) receives a query for a target data set managed by the DBMS. The query may specify a predicate for a column of the target data set. The predicate may include a filtering value to be compared with row values of the column of the target data set. Prior to accessing data block sets storing the target data set from persistent storage, the DBMS identifies an in-memory summary that corresponds to a data block set, in an embodiment. The in-memory summary may include in-memory data structures, each representing a column stored in the data block set. The DBMS determines that a particular in-memory data structure exists in the in-memory summary that represents a portion of values of the column indicated in the predicate of the query. Based on the particular in-memory data structure, the DBMS determines whether or not the data block set can possibly contain the filtering value in the column of the target data set. Based on this determination, the DBMS skips or retrieves the data block set from the persistent storage as part of the query evaluation.
Abstract:
A cluster manager manages copies of a mid-tier database as a mid-tier database cluster. The cluster manager may concurrently manage a backend database system. The cluster manager is configured to monitor for and react to failures of mid-tier database nodes. The cluster manager may react to a mid-tier database failure by, for example, assigning a new active node, creating a new standby node, creating new copies of the mid-tier databases, implementing new replication or backup schemes, reassigning the node's virtual address to another node, or relocating applications that were directly linked to the mid-tier database to another host. Each node or an associated agent may configure the cluster manager during initialization, based on common cluster configuration information. Each copy of the mid-tier database may be, for example, a memory resident database. Thus, a node must reload the entire database into memory to recover a copy of the database.
Abstract:
To prioritize repopulation of in-memory compression units (IMCU), a database server compresses, into an IMCU, a plurality of data units from a database table. In response to changes to any of the plurality of data units within the database table, the database server performs the steps of: (a) invalidating corresponding data units in the IMCU; (b) incrementing an invalidity counter of the IMCU that reflects how many data units within the IMCU have been invalidated; (c) receiving a data request that targets one or more of the plurality of data units of the database table; (d) in response to receiving the data request, incrementing an access counter of the IMCU; and (e) determining a priority for repopulating the IMCU based, at least in part, on the invalidity counter and the access counter.
Abstract:
Techniques are provided for maintaining data persistently in one format, but making that data available to a database server in more than one format. For example, one of the formats in which the data is made available for query processing is based on the on-disk format, while another of the formats in which the data is made available for query processing is independent of the on-disk format. Data that is in the format that is independent of the disk format may be maintained exclusively in volatile memory to reduce the overhead associated with keeping the data in sync with the on-disk format copies of the data.
Abstract:
Techniques are provided for maintaining data persistently in one format, but making that data available to a database server in more than one format. For example, one of the formats in which the data is made available for query processing is based on the on-disk format, while another of the formats in which the data is made available for query processing is independent of the on-disk format. Data that is in the format that is independent of the disk format may be maintained exclusively in volatile memory to reduce the overhead associated with keeping the data in sync with the on-disk format copies of the data.
Abstract:
A plurality of mid-tier databases form a single, consistent cache grid for data in one or more backend data sources, such as a database system. The mid-tier databases may be standard relational databases. Cache agents at each mid-tier database swap in data from the backend database as needed. Ownership locks maintain consistency in the cache grid. Cache agents prevent database operations that will modify cached data in a mid-tier database unless and until ownership of the cached data can be acquired for the mid-tier database. Cache groups define what backend data may be cached, as well as a general structure in which the backend data is to be cached. Metadata for cache groups is shared to ensure that data is cached in the same form throughout the entire grid. Ownership of cached data can then be tracked through a mapping of cached instances of data to particular mid-tier databases.