Abstract:
Techniques are provided to allow more sophisticated operations to be performed remotely by machines that are not fully functional. Operations that can be performed reliably by a machine that has experienced a hardware and/or software error are referred to herein as Remote Direct Memory Operations or “RDMOs”. Unlike RDMAs, which typically involve trivially simple operations such as the retrieval of a single value from the memory of a remote machine, RDMOs may be arbitrarily complex. The techniques described herein can help applications run without interruption when there are software faults or glitches on a remote system with which they interact.
Abstract:
Techniques are provided for enabling a requesting entity to retrieve data that is managed by a database server instance from the volatile memory of a server machine that is executing the database server instance. The techniques allow the requesting entity to retrieve the data from the volatile memory of the host server machine without involving the database server instance in the retrieval operation. Because the retrieval does not involve the database server instance, the retrieval may succeed even when the database server instance has stalled or become unresponsive. In addition, direct retrieval of data using the techniques described herein will often be faster and more efficient than retrieval of the same information through conventional interaction with the database server instance.
Abstract:
A hashing scheme includes a cache-friendly, latchless, non-blocking dynamically resizable hash index with constant-time lookup operations that is also amenable to fast lookups via remote memory access. Specifically, the hashing scheme provides each of the following features: latchless reads, fine grained lightweight locks for writers, non-blocking dynamic resizability, cache-friendly access, constant-time lookup operations, amenable to remote memory access via RDMA protocol through one sided read operations, as well as non-RDMA access.
Abstract:
Techniques are provided for more efficiently using the bandwidth of the I/O path between a CPU and volatile memory during the performance of database operation. Relational data from a relational table is stored in volatile memory as column vectors, where each column vector contains values for a particular column of the table. A binary-comparable format may be used to represent each value within a column vector, regardless of the data type associated with the column. The column vectors may be compressed and/or encoded while in volatile memory, and decompressed/decoded on-the-fly within the CPU. Alternatively, the CPU may be designed to perform operations directly on the compressed and/or encoded column vector data. In addition, techniques are described that enable the CPU to perform vector processing operations on the column vector values.
Abstract:
A method and apparatus for efficiently processing data in various formats in a single instruction multiple data (“SIMD”) architecture is presented. Specifically, a method to unpack a fixed-width bit values in a bit stream to a fixed width byte stream in a SIMD architecture is presented. A method to unpack variable-length byte packed values in a byte stream in a SIMD architecture is presented. A method to decompress a run length encoded compressed bit-vector in a SIMD architecture is presented. A method to return the offset of each bit set to one in a bit-vector in a SIMD architecture is presented. A method to fetch bits from a bit-vector at specified offsets relative to a base in a SIMD architecture is presented. A method to compare values stored in two SIMD registers is presented.
Abstract:
To prioritize repopulation of in-memory compression units (IMCU), a database server compresses, into an IMCU, a plurality of data units from a database table. In response to changes to any of the plurality of data units within the database table, the database server performs the steps of: (a) invalidating corresponding data units in the IMCU; (b) incrementing an invalidity counter of the IMCU that reflects how many data units within the IMCU have been invalidated; (c) receiving a data request that targets one or more of the plurality of data units of the database table; (d) in response to receiving the data request, incrementing an access counter of the IMCU; and (e) determining a priority for repopulating the IMCU based, at least in part, on the invalidity counter and the access counter.
Abstract:
Techniques are provided for maintaining data persistently in one format, but making that data available to a database server in more than one format. For example, one of the formats in which the data is made available for query processing is based on the on-disk format, while another of the formats in which the data is made available for query processing is independent of the on-disk format. Data that is in the format that is independent of the disk format may be maintained exclusively in volatile memory to reduce the overhead associated with keeping the data in sync with the on-disk format copies of the data.
Abstract:
Techniques are provided for maintaining data persistently in one format, but making that data available to a database server in more than one format. For example, one of the formats in which the data is made available for query processing is based on the on-disk format, while another of the formats in which the data is made available for query processing is independent of the on-disk format. Data that is in the format that is independent of the disk format may be maintained exclusively in volatile memory to reduce the overhead associated with keeping the data in sync with the on-disk format copies of the data.
Abstract:
Techniques are provided for granular load and refresh of columnar data. In an embodiment, a particular data object that contains particular data formatted different from column-major format is maintained, the particular data including first data and second data. First and second data objects contain the first and second data, respectively, organized in the column-major format. In response to changes being committed to the first data in the particular data object, invalidating one or more rows of the first data object. In response to a number of invalidated rows of the first data object exceeding a threshold, automatically performing a refresh operation on the first data object independent of any refresh operation on the second data object.
Abstract:
A method and apparatus for efficiently processing data in various formats in a single instruction multiple data (“SIMD”) architecture is presented. Specifically, a method to unpack a fixed-width bit values in a bit stream to a fixed width byte stream in a SIMD architecture is presented. A method to unpack variable-length byte packed values in a byte stream in a SIMD architecture is presented. A method to decompress a run length encoded compressed bit-vector in a SIMD architecture is presented. A method to return the offset of each bit set to one in a bit-vector in a SIMD architecture is presented. A method to fetch bits from a bit-vector at specified offsets relative to a base in a SIMD architecture is presented. A method to compare values stored in two SIMD registers is presented.