Abstract:
A system capable of determining which recognition algorithms should be applied to regions of interest within digital representations is presented. A preprocessing module utilizes one or more feature identification algorithms to determine regions of interest based on feature density. The preprocessing modules leverages the feature density signature for each region to determine which of a plurality of diverse recognition modules should operate on the region of interest. A specific embodiment that focuses on structured documents is also presented. Further, the disclosed approach can be enhanced by addition of an object classifier that classifies types of objects found in the regions of interest.
Abstract:
Apparatus, methods and systems of providing AR content are disclosed. Embodiments of the inventive subject matter can obtain an initial map of an area, derive views of interest, obtain AR content objects associated with the views of interest, establish experience clusters and generate a tile map tessellated based on the experience clusters. A user device could be configured to obtain and instantiate at least some of the AR content objects based on at least one of a location and a recognition.
Abstract:
Apparatus, methods and systems of providing AR content are disclosed. Embodiments of the inventive subject matter can obtain an initial map of an area, derive views of interest, obtain AR content objects associated with the views of interest, establish experience clusters and generate a tile map tessellated based on the experience clusters. A user device could be configured to obtain and instantiate at least some of the AR content objects based on at least one of a location and a recognition.
Abstract:
A system capable of determining which recognition algorithms should be applied to regions of interest within digital representations is presented. A preprocessing module utilizes one or more feature identification algorithms to determine regions of interest based on feature density. The preprocessing modules leverages the feature density signature for each region to determine which of a plurality of diverse recognition modules should operate on the region of interest. A specific embodiment that focuses on structured documents is also presented. Further, the disclosed approach can be enhanced by addition of an object classifier that classifies types of objects found in the regions of interest.
Abstract:
Techniques are provided that include receiving one or more global signatures for a query image in response to an image recognition query, wherein some of the plurality of global signatures are generated using local descriptors corresponding to different cropped versions of the image. A ranking order is determined for a plurality of document images based on nearest neighbor relations between document signatures corresponding to the plurality of document images and each one of the one or more global signatures for the query image. A subset of the plurality of document images is selected based on the determined ranking order. Additional document data corresponding to the selected subset of the plurality of document images is obtained, and a search result is generated based on a geometric verification between the additional document data corresponding to the selected subset of the plurality of document images and the query image.
Abstract:
Systems and methods of quickly recognizing or differentiating many objects are presented. Contemplated systems include an object model database storing recognition models associated with known modeled objects. The object identifiers can be indexed in the object model database based on recognition features derived from key frames of the modeled object. Such objects are recognized by a recognition engine at a later time. The recognition engine can construct a recognition strategy based on a current context where the recognition strategy includes rules for executing one or more recognition algorithms on a digital representation of a scene. The recognition engine can recognize an object from the object model database, and then attempt to identify key frame bundles that are contextually relevant, which can then be used to track the object or to query a content database for content information.
Abstract:
Multiparty object recognition systems and methods are disclosed. A method of interactively manipulating virtual object data, wherein an object database is configured to store first party object data that corresponds to a first real-world object and is further configured to store second party object data that corresponds to a second real-world object, includes obtaining the first party object data and the second party object data for storage within the object database. Access to the object database is controlled such that the first party object data and the second party object data is accessible to the first party and the second party. Modification of the first party object data by the second party is facilitated to generate modified first party object data that is in accordance with at least one context parameter of the second party object data, and the modified first party object data is communicated to the first party.
Abstract:
Multiparty object recognition systems and methods are disclosed. A method of interactively manipulating virtual object data, wherein an object database is configured to store first party object data that corresponds to a first real-world object and is further configured to store second party object data that corresponds to a second real-world object, includes obtaining the first party object data and the second party object data for storage within the object database. Access to the object database is controlled such that the first party object data and the second party object data is accessible to the first party and the second party. Modification of the first party object data by the second party is facilitated to generate modified first party object data that is in accordance with at least one context parameter of the second party object data, and the modified first party object data is communicated to the first party.
Abstract:
Methods, systems, and articles of manufacture to improve image recognition searching are disclosed. In some embodiments, a first document image of a known object is used to generate one or more other document images of the same object by applying one or more techniques for synthetically generating images. The synthetically generated images correspond to different variations in conditions under which a potential query image might be captured. Extracted features from an initial image of a known object and features extracted from the one or more synthetically generated images are stored, along with their locations, as part of a common model of the known object. In other embodiments, image recognition search effectiveness is improved by transforming the location of features of multiple images of a same known object into a common coordinate system. This can enhance the accuracy of certain aspects of existing image search/recognition techniques including, for example, geometric verification.
Abstract:
Techniques are provided that include obtaining a vocabulary including a set of content indices that reference corresponding cells in a descriptor space based on an input set of descriptors. A plurality of local features of an image are identified based on the vocabulary, the local features being represented by a plurality of local descriptors. An associated visual word in the vocabulary is determined for each of the plurality of local descriptors. A plurality of global signatures for the image are generated based on the associated visual words, wherein some of the plurality of global signatures are generated using local descriptors corresponding to different cropped versions of the image, two or more of the different cropped versions of the image being centered at a same pixel location of the image, and an image recognition search is facilitated using the plurality of global signatures to search a document image dataset.