Abstract:
Methods, corresponding apparatuses, and computer program products for configuring one or more signaling radio bearers are disclosed. A method comprises sending a configuration request for configuring one or more signaling radio bearers to a local area access point by which a user equipment is connected to a wide area base station, wherein the one or more signaling radio bearers are used for communication between the user equipment and the wide area base station. The method also comprises receiving configuration information with respect to the one or more signaling radio bearers from the local area access point. The method additionally comprises sending the configuration information with respect to the one or more signaling radio bearers to the user equipment via a radio resource control message. With the claimed inventions, the wide area base station is capable of efficiently configuring the signaling radio bearers for use between the wide area base station and the user equipment via the local area access point.
Abstract:
A method of communicating between a terminal and a wireless network node comprising, at the terminal: checking validity of a timing advance; and if the timing advance is valid, causing sending of an uplink connection request within a preconfigured uplink resource.
Abstract:
An apparatus and method for data transmission are presented. The method in a base station comprises broadcasting (200) information on one or more neighboring cells supporting preconfigured uplink resources and information on request types supported by the one or more cells; receiving (202) a user terminal which performs a cell reselection to the base station; receiving (204) from a user terminal a request to utilize dedicated preconfigured uplink resources, the request comprising Physical Cell Identity of the previous base station with which the user terminal utilized dedicated preconfigured uplink resources prior camping on the base station and the User Equipment Identification of the user terminal in the previous base station; transmitting (206) to the previous base station a message requesting configuration data related to dedicated preconfigured uplink resources of the user terminal and an indication that the previous base station may release the resources; receiving (208) from the previous base station the configuration data; and restoring (210) dedicated preconfigured uplink resources for the user terminal.
Abstract:
Embodiments of the present disclosure relate to methods, devices and computer readable storage media for determining a transport block size (TBS) for Contention Free Random (CFRA) in a random access procedure. In example embodiments, a CFRA request is transmitted by a terminal device to a network device during a random access procedure. The terminal device receives a random access to the CFRA request from the network device. The random access response indicates a TBS granted by the network device for use in transmission. Based on the granted TBS, the terminal device transmits, to the network device, a first data block with the granted TBS or a second data block to be transmitted and stored in a buffer. In the way, the data may be avoided, and the data transmission efficiency may be improved.
Abstract:
Various communication systems may benefit from minimization of service interruption. For example, certain wireless communication systems may benefit from support for minimization of service interruption with device-to-device-based user-equipment-to-network relay. A method can include determining that a layer 3 relay is selected for a remote user equipment. The method can also include sending an indication to a serving access node about the relay selection.
Abstract:
Methods for D2D connection re-establishment and related user equipments and radio access node are disclosed, wherein the D2D connection is established between a first user equipment and a second user equipment under the control of a radio access node. In one embodiment, the method comprises: receiving, by the first user equipments, a first message from the second user equipments, the first message comprising a first credential which is calculated by the second user equipment; verifying the first credential by the first user equipment; and sending a second message indicating acknowledgement of the D2D connection re-establishment from the first user equipment to the second user equipment upon successful verification of the first credential.
Abstract:
In accordance with an example embodiment of the present invention, there is provided an apparatus, comprising at least one processing core configured to determine an opportunity for device-to-device, D2D, communication, and at least one transmitter configured to cause transmitting of a D2D communication request, wherein the D2D communication request at least one of comprises a radio resource control signaling message and comprises an indication of a type of D2D communication that is requested. The indicated type may comprise D2D communication with no fallback to cellular connectivity, wherein such a D2D communication can be established without involving a core network, CN.
Abstract:
Methods, corresponding apparatuses, and computer program products for signaling radio bearer transmission in a heterogeneous network are provided. The method comprises performing, by a user equipment, as least one of the following: a local area radio resource control connection procedure with a local area base station over a local area specific signaling radio bearer; and a wide area radio resource control connection procedure with a wide area base station over a wide area specific signaling radio bearer via the local area base station. With the claimed inventions, the transmission of the specific signaling radio bearer (e.g., SRBO) in the heterogeneous network can be efficiently managed and implemented.
Abstract:
There is provided an apparatus, said apparatus comprising means for receiving, at a user equipment, a scheduling grant for a first number, M, of transport blocks, wherein the scheduling grant comprises an indication of a second number, N, of transport blocks to be transmitted or received before a time delay, wherein M is greater than 1 and N is less than or equal to M, causing transmission or reception of a first group of N transport blocks and, if N is less than M, after the time delay, causing transmission or reception of a further group of up to N transport blocks followed by the time delay, until M transport blocks are caused to be transmitted or received.
Abstract:
Embodiments of the present disclosure relate to methods, devices and computer readable storage media for determining a transport block size (TBS) for Contention Free Random Access (CFRA) in a random access procedure. In example embodiments, a CFRA request is transmitted by a terminal device to a network device during a random access procedure. The terminal device receives a random access response to the CFRA request from the network device. The random access response indicates a TBS granted by the network device for use in transmission. Based on the granted TBS, the terminal device transmits, to the network device, a first data block with the granted TBS or a second data block to be transmitted and stored in a buffer. In this way, the data loss may be avoided, and the data transmission efficiency may be improved.