Abstract:
A wireless power receiver for wirelessly receiving power from a wireless power supplier includes a power receiver for receiving wireless power from the wireless power supplier and storing the wireless power for a first time period, a rectifier connected to the power receiver for rectifying the wireless power, a power adjuster connected to the rectifier and an output end, for adjusting a magnitude of the wireless power by enabling the power receiver to store the wireless power for the first time period and delivering the wireless power to the output end for a second time period, and a controller for determining the first and second time periods.
Abstract:
A single-inductor multiple-output (SIMO) converter includes a converter configured to provide respective voltages of a plurality of channels with a single inductor and a control logic configured to control switches of the converter based on clocks corresponding to the plurality of channels, wherein the control logic is configured to compare an output voltage of a selected channel of the plurality of channels that corresponds to a control target to a reference voltage of the selected channel based on a clock of the selected channel and operate in one of a first mode that adaptively adjusts a number of times that a pulse triggering a power transfer to the channel is generated, and a second mode that blocks a generation of the pulse.
Abstract:
An amplifier includes: a first input transistor connected to a first input, a first output, and a power source or a ground, a second input transistor connected to a second input, a second output, and the power source or the ground; a first replica transistor connected to the first input, a detection node, and the power source or the ground; a second replica transistor connected to the second input, the detection node, and the power source or the ground; and a bias transistor connected to a bias voltage, the detection node, and the power source or the ground.
Abstract:
A data driver includes a data signal converter to convert image data to a data signal, an output buffer to output the data signal to a data line, a first cascode circuit connected to the output buffer and including a plurality of transistors, a first noise attenuator connected to a first node between the output buffer and the first cascode circuit, and to attenuate a first current noise, a second cascode circuit connected to the output buffer and including a plurality of transistors, a second noise attenuator connected a second node between the output buffer and the second cascode circuit, and to attenuate a second current noise, a current integrator to generate an integrated voltage by integrating a first current flowing through the first cascode circuit and a second current flowing through the second cascade circuit, and an analog-digital converter (ADC) to convert the integrated voltage to a digital signal.
Abstract:
A class-D amplifier includes an error amplification circuit, a duty signal generator, a level selection circuit, a driver and control block and an output stage. The class-D amplifier divides peal levels of an error signal into multi-level and changes a scheme for modulating the error signal when the error signal crosses each level boundary of the multi-level thereby to have an effect such as the error signal is folded. Therefore, the class-D amplifier drives output nodes with multi-level and thus the class-D amplifier may increasing efficiency while reducing EMI.
Abstract:
A wireless electric power receiver for receiving wireless electric power from a wireless electric transmitter is provided. The wireless electric power receiver includes an electric power receiving unit that receives wireless electric power from the wireless electric power transmitter; a rectifying unit that rectifies wireless electric power in the form of alternating current output from the wireless electric power receiving unit and outputs rectified electric power; and an electric power regulation unit that receives an input of the rectified electric power, outputs first electric power which has a lower value of a first voltage than that of the rectified electric power for a first period, and does not output electric power for a second period, so as to output electric power with a predetermined voltage value.