Correcting photon counts in a photon counting X-ray radiation detection system

    公开(公告)号:US10281596B2

    公开(公告)日:2019-05-07

    申请号:US15756611

    申请日:2016-09-09

    Abstract: The invention relates to a photon counting x-ray radiation detection system. The system (31) comprises an x-ray radiation device (2) for providing polychromatic x-ray radiation (4) for traversing an examination zone (5) during a detection period of a scan. A photon counting detection device (6) comprising detection elements (3) detects the x-ray radiation after having traversed the examination zone and measures for each detection element photon counts in one or more energy bins during the detection period. A correction unit (12) estimates for each detection element an amount of a build up charge present in the detection element and corrects the measured photon counts for the detection element based on the estimated amount of the build up charge. This allows the corruption of the photon count rates caused by the build up charges to be compensated and to improve the determination of the photon counts.

    Detection apparatus for detecting radiation

    公开(公告)号:US09958554B2

    公开(公告)日:2018-05-01

    申请号:US14359337

    申请日:2012-11-23

    CPC classification number: G01T1/2002 G01N23/04 G01T1/2006 G01T1/2018 G01T1/202

    Abstract: The invention relates to a detection apparatus for detecting radiation. The detection apparatus comprises a GOS material (20) for generating scintillation light depending on the detected radiation (25), an optical filter (24) for reducing the intensity of a part of the scintillation light having a wavelength being larger than 650 nm, and a detection unit (21) for detecting the filtered scintillation light. Because of the filtering procedure relatively slow components, i.e. components corresponding to a relatively large decay time, of the scintillation light weakly constribute to the detection process or are not detected at all by the detection unit, thereby increasing the temporal resolution of the detection apparatus. The resulting fast detection apparatus can be suitable for kVp-switching computed tomography systems.

    X-ray position tracking
    13.
    发明授权

    公开(公告)号:US12226245B2

    公开(公告)日:2025-02-18

    申请号:US18017143

    申请日:2021-07-16

    Abstract: A spectral X-ray imaging system (100) includes an X-ray source (110) and an X-ray detector (120) that are mounted to a support structure (150). The support structure (150) is configured to rotate the X-ray source (110) and the X-ray detector (120) around two or more orthogonal axes (A-A′, B-B′). One or more processors (130) are configured to cause the system (100) to perform operations that include: generating a spectral image based on the spectral image data; and identifying, in the spectral image, a position of a first fiducial marker (180i) comprising a first material, based on a first X-ray absorption k-edge energy value (190i) of the first material.

    Cardiac computed tomography
    14.
    发明授权

    公开(公告)号:US11324473B2

    公开(公告)日:2022-05-10

    申请号:US16329797

    申请日:2017-09-04

    Inventor: Axel Thran

    Abstract: A method for operating a cardiac CT imaging system (200) in coronary CT with prospective electrocardiography-triggering of the imaging system (200) is proposed. The method comprises the steps of determining a plurality of R-peak times (ti) from a dataset of electrocardiography data, determining a variability of a heart rate by statistically analyzing the determined R-peak times (ti), and automatically adjusting an acquisition time period (ΔTac) of the CT imaging system (200) for acquiring projection data based on the determined variability of the heart rate.

    Image generation apparatus
    15.
    发明授权

    公开(公告)号:US10373349B2

    公开(公告)日:2019-08-06

    申请号:US15125608

    申请日:2015-03-18

    Abstract: The invention relates to an image generation apparatus (1) for generating an image of an object. A reconstruction unit (10) reconstructs the image based on provided measured projection values such that costs defined by a cost function are reduced, wherein the cost function depends on differences between calculated projection values, which have been determined by simulating a forward projection through the image, and the provided measured projection values, and wherein a degree of dependence of the cost function on a respective difference depends on the respective difference. This can allow for a consideration of a degree of disturbance of the measured projection values by motion and/or by an incomplete illumination of the object during the reconstruction process, which can lead to a reconstruction of an image having an improved image quality.

    Detection apparatus comprising two scintillators for detecting X-ray radiation
    18.
    发明授权
    Detection apparatus comprising two scintillators for detecting X-ray radiation 有权
    检测装置包括用于检测X射线辐射的两个闪烁体

    公开(公告)号:US09423514B2

    公开(公告)日:2016-08-23

    申请号:US14359311

    申请日:2012-11-23

    CPC classification number: G01T1/20 G01T1/2008

    Abstract: Detection apparatus for detecting radiation The invention relates to a detection apparatus for detecting radiation. The detection apparatus comprises at least two scintillators (14, 15) having different temporal behaviors, each generating scintillation light upon reception of radiation, wherein the generated scintillation light is commonly detected by a scintillation light detection unit (16), thereby generating a common light detection signal. A detection values determining unit determines first detection values by applying a first determination process and second detection values by applying a second determination process, which is different to the first determination process, on the detection signal. The first determination process includes frequency filtering the detection signal. Since the scintillation light of the different scintilla-tors is collectively detected by the same scintillation light detection unit, detection arrangements with, for example, side-looking photodiodes for separately detecting the different scintillation light of the different scintillators are not necessarily required, thereby reducing the technical complexity of the detection apparatus.

    Abstract translation: 用于检测辐射的检测装置技术领域本发明涉及一种用于检测辐射的检测装置。 检测装置包括具有不同时间行为的至少两个闪烁体(14,15),每个闪烁体在接收到辐射时产生闪烁光,其中所产生的闪烁光通常由闪烁光检测单元(16)检测,从而产生公共光 检测信号。 检测值确定单元通过对检测信号应用与第一确定处理不同的第二确定处理来应用第一确定处理和第二检测值来确定第一检测值。 第一确定处理包括对检测信号进行频率滤波。 由于不同的闪烁体的闪烁光被同一个闪烁光检测部共同检测,所以不一定需要与例如用于分别检测不同的闪烁体的不同的闪烁体的侧视光电二极管的检测装置,从而减少 检测装置的技术复杂性。

Patent Agency Ranking