Abstract:
K data signals, or bursts, are transmitted over a shared spectrum in a code division multiple access communication format. A combined signal is received and sampled over the shared spectrum, as a plurality of received vector versions. The combined signal includes the K transmitted data signals. A plurality of system matrices and an associated covariance matrix using codes and estimated impulse responses of the K data signals is produced. Each system matrix corresponds to a received vector version. The system and covariance matrices are extended and approximated as block circulant matrices. A diagonal matrix of each of the extended and approximated system and covariance matrices are determined by prime factor algorithm-fast Fourier transform (PFA-FFT) without division of the matrix. The received vector versions are extended. A product of the diagonal matrices and the extended received vector versions is taken. An inverse block discrete Fourier transform is performed by a PFA-FFT on a result of the product to produce the estimated data of the K data signals.
Abstract:
In a communication station, such as a UE or Node B of a 3GPP system, where channelization coded signals are received on physical channels of at least one coded composite transport channel (CCTrCh) within timeslots of a system time frame, the actual number of channelization codes transmitted for the CCTrCh within a system time frame is determined. The transmitted channelization codes are then identified by performing a channelization code identification algorithm based on the determined number.
Abstract:
A system and method of wireless communication determines received signal timing deviation which is used to generate a timing advance for adjusting User Equipment (UE) transmissions. An adaptive threshold for measuring the timing deviation is set based on the energy level of received UE signals. UE signal samples which exceed the threshold are evaluated to determine timing deviation.
Abstract:
A system and a method of controlling transmitter power in a wireless communication system in which user data is processed as a multirate signal having a rate N(t) and in which the user data signal having rate N(t) is converted into a transmission data signal having a faster rate M(t) for transmission. The transmission power is adjusted on a relatively slow basis based on quality of data received by a receiver of the transmitted data. The transmitter power is determined as a function of N(t)/M(t) such that a change in the data rate in the multiple channels or the rate of the transmission data signal is compensated in advance of a quality of data based adjustment associated with such data rate change. Preferably, the user data signal having rate N(t) is converted into the transmission data signal having the faster rate M(t) by repeating selected data bits whereby the energy per bit to noise spectrum density ratio is increased in the transmission data signal.