Abstract:
A method and system for performing initial cell search is disclosed. Step 1 processing is preformed to detect a peak primary synchronization code (PSC) location (i.e. chip offset or chip location). Step 2 processing is performed to obtain the toffset and code group. Step 3 processing is performed to identify the midamble of a base station with which the WTRU performing the initial cell search may synchronize with.
Abstract:
The present invention is directed to an improved telecommunication receiver for receiving wireless multi-path communication signals. A novel RAKE receiver and a time diverse integration system for the calculation of the relative power of received signal samples are provided. Preferably, the receiver is embodied in a UE or base station of a CDMA wireless telecommunication system, such as a 3GPP system.
Abstract:
In a time-division duplex (TDD) system, a reliable initialization scheme that is applicable to an automatic gain controller (AGC) at a base station is implemented in various forms depending on the availability of certain information such as signal-to-interference ratio (SIR), spreading factors and other parameters. A more accurate estimation of the initial control word of a gain-adjustable amplifier for one or more time slots is implemented. The scheme is applicable to AGC initialization for each time slot of the TDD system, but is also applicable to other systems of transmission, without limitation.
Abstract:
The present invention is directed to an improved telecommunication receiver for receiving wireless multi-path communication signals. A novel RAKE receiver and a time diverse integration system for the calculation of the relative power of received signal samples are provided. Preferably, the receiver is embodied in a UE or base station of a CDMA wireless telecommunication system, such as a 3GPP system.
Abstract:
A system and method for establishing initial synchronization for the link between a UE and a base station in a communication network uses window exclusion logic in order to avoid a deadlock condition upon a detection of the wrong public land mobile network (PLMN). The communication signal is processed in a three step decision process. The first decision step determines a chip offset of the strongest path detected over a frame of samples. In response to the first decision, the second step generates a scrambling code group number and slot offset for retrieving the secondary synchronization code. The third decision step retrieves a primary scrambling code in response to the code group number for synchronizing the UE to the base station.