Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and an evolved Node Bs (“eNBs”) in a plurality of frequency bands. An eNB may transmit cross-carrier, cross-subframe scheduling information to a UE in a licensed frequency band. In response reception of the scheduling information, the UE may sense a wireless transmission medium to determine if the medium is idle. If the medium is idle, the UE may generate and transmit a request to reserve the medium in the unlicensed frequency band (e.g., a Clear-to-Send message). The eNB may transmit downlink data to the UE in the unlicensed frequency band. Other embodiments may be described and/or claimed.
Abstract:
A user equipment (UE) can reserve shared spectrum between two wireless protocols upon the request from a tower. For example, an enhanced node B (eNB or eNodeB) transmits a message to associated UEs including a set of candidate UEs, a length of time to reserve, and a frequency band to use. UEs perform medium sensing on the specified spectrum if a UE finds its identifier in the set of candidate UEs. Candidate UEs transmit a clear to send (CTS) message with channel reservation information if the medium is idle. A result of the success or failure of the CTS transmission attempt is sent back to the eNB. Upon receiving the feedback information from the UEs, the eNB starts sending data to those UEs that sent the positive feedback on the channel reservation.
Abstract:
Embodiments of a system and method for configuring device to device connections in a Wireless Network are generally described herein. In some embodiments, an apparatus of User Equipment (UE) may include transceiver circuitry to receive a link weight and receive wideband symbols from a plurality of UEs. The apparatus may include processing circuitry to determine a channel gain and determine whether a predetermined transmission power is to be changed.
Abstract:
Described is an apparatus of an Evolved Node-B (eNB) operable to communicate with a User Equipment (UE) on a wireless network. The apparatus may comprise a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to process one or more configuration transmissions from the eNB carrying one or more parameters for Grantless Uplink (GUL) transmission. The second circuitry may be operable to determine one or more GUL subframes of an acquired Maximum Channel Occupancy Time (MCOT) on time-domain resources allocated for GUL transmission from the UE. The third circuitry may be operable to generate a GUL transmission during the one or more GUL subframes of the acquired MCOT in accordance with the one or more parameters for GUL transmission.
Abstract:
Devices, methods, user equipment (UE), evolved node B (eNB), and storage media are described suitable for coexistence operations for uplink communications on multiple unlicensed carriers. Various embodiments are implemented in LTE systems with license-assisted access (LAA) associated communications. In one embodiment, a UE processes one or more uplink grants from an eNB scheduling transmissions on multiple unlicensed carriers at a first time, and indicating a first channel access procedure. The UE then selects a first unlicensed carrier and performs the first channel access procedure, and performs a second channel access procedure on a second unlicensed carrier of the multiple unlicensed carriers.
Abstract:
Embodiments of the present disclosure describe apparatuses and methods for determining a listen before talk (LBT) protocol to be used in a long term evolution unlicensed spectrum environment, wherein the LBT protocol is based at least in part on a transmitter-based LBT protocol or a receiver-aided LBT protocol. Other embodiments may be described and/or claimed.
Abstract:
Techniques for communication of a partial subframe and properties related to the partial subframe of a plurality of subframes in licensed assisted access (LAA) for an unlicensed frequency band are discussed. A network device (e.g., an evolved NodeB, or other cell network device) can generate a listen before talk (LBT) protocol in order to determine whether an unlicensed carrier of a secondary cell device is idle or busy. The evolved Node B (eNB) can communicate starting or ending partial subframes in a downlink transmission, and a user equipment (UE) can process partial subframes based on the communications and a scheduling policy.
Abstract:
Techniques for transmission of a physical downlink control channel (PDCCH) or enhanced PDCCH (EPDCCH) within a partial subframe of a license assisted access (LAA) burst are discussed. One example apparatus comprises a processor configured to generate a LAA burst; generate one or more downlink control channel messages that comprise at least one of PDCCH messages or EPDCCH messages; generate a physical layer encoding of the LAA burst comprising a first partial subframe, wherein the first partial subframe comprises a physical layer encoding of the one or more downlink control channel messages; and output the first partial subframe comprising the physical layer encoding of the one or more control channel messages to transmitter circuitry for subsequent transmission via an unlicensed carrier.
Abstract:
Example systems, methods, and devices for extending range of WiFi networks are discussed. More specifically, methods for extending range of a Wi-Fi network are disclosed. The method may include the operations of appending, by a network device, one or more codebits to one or more original codebits or coded symbols, sending, by the network device, the original codebits or coded symbols and the appended codebits to an interleaver or a constellation mapper for transmission. The original codebits or coded symbols and the appended codebits may be sent over a plurality of subcarriers. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
Abstract:
A License Assisted Access (LAA) enhanced NodeB (eNB), user equipment (UE) and communication methods therebetween operating in a Long Term Evolution unlicensed band (LTE-U) are generally described. The eNB may transmit a request to the UE for information regarding a Wireless Local Area Network (WLAN) over which the UE may be able to communicate. The WLAN information may include an LTE-U channel and time window for reporting. The UE may obtain the WLAN information through communication with an access point (AP). Measurement information of the LTE-U channel may also be obtained by or on behalf of the UE. The UE may transmit the WLAN information to the eNB. The eNB may use the WLAN information or submit the WLAN information to a network entity to perform channel selection, UE grouping or localization, appointing delegate UEs to perform channel sensing or scheduling UEs in a same group or proximity.