Abstract:
A display apparatus includes an image generator including a spatial light modulator that is configured to perform phase modulation on to-be-modulated image light to generate modulated first image light and modulated second image light, and an image display module that is disposed on a light emitting side of the image generator. The image display module includes a first diffusing screen and a second diffusing screen. The first image light is projected on the first diffusing screen and the second image light is projected on the second diffusing screen. A spatial position of the first diffusing screen is different from a spatial position of the second diffusing screen.
Abstract:
Embodiments of the present invention provide a reconfigurable optical add/drop multiplexer, including: an input component, an output component, a beamsplitter, a first switch array, a wavelength dispersion system, a redirection system, and a second switch array. The input component includes M+P input ports, the output component includes N output ports, the beamsplitter is configured to: receive M input beams from M input ports, and split each of the M input beams into at least N parts, to obtain at least M×N beams; the first switch array includes at least P switch units; and the second switch array includes N rows of switch units. The first switch array, the beamsplitter, the wavelength dispersion system, the redirection system, and the second switch array are arranged so that P optical add beams and sub-beams of M×N beams in the at least M×N beams can be routed to the N output ports.
Abstract:
A signal monitoring method and apparatus for a wavelength selective switch (WSS) are provided. The signal monitoring method for a wavelength selective switch WSS includes: encoding a phase of a first optical engine based on an input WDM signal, so that the WDM signal is split into a transmitted signal and a monitored signal after passing through the first optical engine; inputting the monitored signal to a second optical engine disposed at an output-side grating; and controlling the second optical engine to rotate in a wavelength plane of the WDM signal, so that monitored light of a specified wavelength in the monitored signal is output from the second optical engine at a preset angle.
Abstract:
The present invention relates to the field of communication transmission, and in particular, to a method for generating a probe pulse and a coherent optical time domain reflectometer. The coherent optical time domain reflectometer includes: a control unit, configured to generate a first pulse signal and a second pulse signal which have a same period T, where the second pulse signal lags behind the first pulse signal, and T satisfies T≧t+2L/C; a driving unit, configured to generate a frequency change driving signal according to the first pulse signal; a continuous light laser device, configured to generate, as driven by the frequency change driving signal, continuous light having a changing frequency and an unchanging frequency spectrum width; and a probe pulse generating unit, configured to modulate the continuous light according to the second pulse signal to generate a probe pulse.
Abstract:
An optical cross-connect disclosed herein includes an input-end unit, an optical beam-splitting and switching unit, and an output-end unit. The input-end unit is configured to transmit a set of first light beams to the optical beam-splitting and switching unit. The optical beam-splitting and switching unit is configured to split each light beam in the set of first light beams into second light beams, to obtain a set of second light beams. The optical beam-splitting and switching unit is further configured to: perform optical path deflection on each light beam in the set of second light beams based on a preset optical-path offset parameter set, and transmit, to the output-end unit, the deflected second light beams. The output-end unit is configured to output the set of second light beams.
Abstract:
This application discloses an optical signal transceiver apparatus, and belongs to the communications field. The apparatus includes: an optical signal generation module, configured to generate a to-be-sent optical signal and a local oscillator optical signal, where the to-be-sent optical signal includes an OTDR signal; an optical combining/splitting module, configured to: receive a to-be-processed optical signal from an optical fiber; and input the to-be-processed optical signal into an coherent receiving module; the coherent receiving module, configured to coherently receive the local oscillator optical signal and the to-be-processed optical signal to obtain a to-be-processed electrical signal; a signal processing module, configured to: obtain a first digital signal and a second digital signal from the to-be-processed electrical signal based on a signal frequency; process the first digital signal to obtain a communications code stream; and process the second digital signal to obtain information used to reflect a feature of the optical fiber.
Abstract:
A wavelength tunable optical transmitter apparatus relates to the field of communications technologies and includes a plurality of multi-longitudinal mode lasers (1), a cyclic wavelength demultiplexer/multiplexer (2), and a reflector (3). The multi-longitudinal mode lasers output multi-longitudinal mode signals having a periodically repeated frequency interval, where the period is Δfmode. The cyclic wavelength demultiplexer/multiplexer performs periodically repeated filtering on the multi-longitudinal mode signals input by the multi-longitudinal mode lasers, to obtain single frequency signals, where a repetition period of a filter window is Δfband, Δfmode is different from Δfband, and Δfmode and Δfband are not in an integer-multiple relationship, and then, multiplexes the plurality of single frequency signals and outputs the multiplexed signal. The reflector reflects the multiplexed signal. The reflected multiplexed signal separately returns to the multi-longitudinal mode laser by using the cyclic wavelength demultiplexer/multiplexer again.
Abstract:
The present invention discloses an optical power equilibrium method and apparatus. The method includes: configuring a liquid crystal on silicon LCOS as a blazed grating pattern whose phase periodically changes, where each period includes three grating segments, a pixel quantity in each period does not change, and a second grating segment is located between a first grating segment and a third grating segment; monitoring power of wavelength signals in a WDM signal, where the WDM signal includes a first wavelength signal; and reducing a phase modulation depth and a pixel quantity of the second grating segment in each period at a first location if power of the first wavelength signal is greater than preset target power, so that the power of the first wavelength signal is the same as the target power, where the first location is a location at which the first wavelength signal is incident to the LCOS.
Abstract:
A wavelength selective switch (WSS), including an input optical fiber collimation array, a first optical switching engine, a dispersion device, an optical path converter, a second optical switching engine, a third optical switching engine, and an output optical fiber collimation array. A first beam is input from a first port of the input optical fiber collimation array. The first optical switching engine performs angle deflection on the first beam on a first plane. The dispersion device demultiplexes, on a second plane, the angle-deflected first beam into multiple sub-wavelength beams. The second optical switching engine performs angle deflection on the multiple sub-wavelength beams that are obtained by demultiplexing. The dispersion device multiplexes, on the second plane, the angle-deflected multiple sub-wavelength beams. The third optical switching engine performs angle deflection on the multiplexed multiple sub-wavelength beams on the first plane.
Abstract:
A wavelength selective switch (WSS), including an input optical fiber collimation array, a first optical switching engine, a dispersion device, an optical path converter, a second optical switching engine, a third optical switching engine, and an output optical fiber collimation array. A first beam is input from a first port of the input optical fiber collimation array. The first optical switching engine performs angle deflection on the first beam on a first plane. The dispersion device demultiplexes, on a second plane, the angle-deflected first beam into multiple sub-wavelength beams. The second optical switching engine performs angle deflection on the multiple sub-wavelength beams that are obtained by demultiplexing. The dispersion device multiplexes, on the second plane, the angle-deflected multiple sub-wavelength beams. The third optical switching engine performs angle deflection on the multiplexed multiple sub-wavelength beams on the first plane.