Abstract:
Embodiments of the present invention provide a method and an apparatus for dynamic spectrum management. The method includes: determining a reusable spectrum for one of multiple cell links in a network according to co-frequency indication information, where the co-frequency indication information is used to indicate reusable levels of spectrums of other cell links for each cell link in the multiple cell links; and updating a spectrum configuration of the one of the multiple cell links by using the reusable spectrum of the one of the multiple cell links. By determining a reusable spectrum for a specific cell link according to co-frequency indication information, embodiments of the present invention can locally adjust the spectrum configuration of the specific cell link, thereby reducing a spectrum configuration overhead while increasing network capacity and reducing inter-cell interference.
Abstract:
A data retransmission method, a relay station, a base station, and a communication system are provided. The data retransmission method includes: receiving a reception report sent by a base station and source data frames of a current transmission period that are sent by a user equipment through a subchannel, where the reception report carries sequence numbers of source data frames of a previous transmission period and the source data frames are not correctly received by the base station; obtaining according to the reception report and pre-stored source data frames of the previous transmission period, a set C1 of source data frames of the previous transmission period that need to be retransmitted; performing joint encoding for the source data frames in the set C1 and the source data frames of the current transmission period; and sending forwarded data frames generated by joint encoding to the base station through the subchannel.
Abstract:
The embodiments of the present invention provide a method, a device and a system for common channel processing, and the method includes: generating a first set of common channel spectrum candidates according to location information of available sub-carriers and attribute information of the available sub-carriers retrieved from a first database of spectrum statuses; transmitting the first set of the common channel spectrum candidates to a terminal; and determining candidate sub-channels for common channels from a third set of common channel spectrum candidates returned by the terminal, so as to generate and transmit a set of common channel spectrums to the terminal. With the embodiments of the present invention, the base station and the terminal acquire respectively local sub-carriers which are available currently, and perform spectrum negotiation. A set of common channel spectrums is determined by the base station, and a common channel mechanism is enabled in a dynamic spectrum environment.
Abstract:
A carrier aggregation system includes a TDD carrier and an FDD carrier, and a method for the carrier aggregation system includes: a terminal device receives downlink information by using a secondary component carrier; and the terminal device sends feedback information for the downlink information by using a primary component carrier. When the primary component carrier or the secondary component carrier is a TDD carrier, at least one first subframe that includes P consecutive sTTIs exists in the TDD carrier, and at least one sTTI that occupies two OFDM symbols exists in the P consecutive sTTIs, where P is an integer greater than 1. Embodiments of the present disclosure further provide a corresponding terminal device and network device.
Abstract:
A communication apparatus acting as a baseband unit (BBU) or being applicable to a BBU, and having instructions for obtaining first coordination information to be sent to a second BBU, determining, based on preset link information, a transmission link corresponding to the second BBU, the transmission link including a first remote radio unit (RRU) and a second RRU, the first RRU belonging to the BBU, the second RRU belonging to the second BBU, and the first RRU and the second RRU being connected through a wired link, sending the first coordination information to the first RRU, sending indication information to the first RRU, the indication information indicating to the first RRU to send the first coordination information to the second RRU through the wired link, the indication information having an identifier of the second RRU.
Abstract:
A service distribution obtaining method, a network side device, and a terminal are provided in this disclosure. The method includes: obtaining, by a network side device, measurement information of multiple terminals in a serving cell and an average service volume of each of the multiple terminals, and determining service distribution, where the measurement information includes first channel state values of channels between the multiple terminals and a primary cell, the primary cell refers to the serving cell or one of neighboring cells of the serving cell, the service distribution includes a first typical channel state value of each type of the first channel state values and a first service volume between a terminal set corresponding to each type of the first channel state values and the primary cell, and the first service volume is determined according to the average service volume of each terminal.
Abstract:
A method for determining a multi-point transmission resource includes: obtaining backhaul statuses of multiple cells participating in multi-point transmission, and determining available backhaul rates of the multiple cells according to the backhaul statuses of the multiple cells; obtaining available access resources of the multiple cells for multi-point transmission; and determining access resources of the multiple cells for multi-point transmission according to a type and a service requirement of multi-point transmission, and the available backhaul rates and the available access resources of the multiple cells for multi-point transmission. The method improves multi-point transmission efficiency.
Abstract:
A method for determining a multi-point transmission resource includes: obtaining backhaul statuses of multiple cells participating in multi-point transmission, and determining available backhaul rates of the multiple cells according to the backhaul statuses of the multiple cells; obtaining available access resources of the multiple cells for multi-point transmission; and determining access resources of the multiple cells for multi-point transmission according to a type and a service requirement of multi-point transmission, and the available backhaul rates and the available access resources of the multiple cells for multi-point transmission. The method improves multi-point transmission efficiency.
Abstract:
The embodiments of the present invention provide a method and a device for detecting a traffic hot spot of a cell. The method includes: acquiring load information of a cell in which a wireless access point AP is located, the load information includes at least two types of the following information: a data rate of user traffic requirement, the number of users associated with an AP, an average length of data packets and an average duration of successful transmissions; determining whether an operating state of the AP is abnormal according to the at least two types of information; determining a satisfaction degree of user according to the actual traffic rate of user, if the operating state of the AP is abnormal; and determining that a traffic hot spot exists in the cell, if the satisfaction degree of user is lower than a first preset threshold.
Abstract:
The present invention provides a network optimization system, device, and method, including: determining, by a radio resource management functional entity, radio resource statistical data that is based on a TTI time granularity, acquiring radio resource configuration information, and managing a radio resource of a cell in which the radio resource management functional entity is located; determining, by a distributed optimization functional entity, first time granularity data and a first key performance index (KPI), determining first reference configuration information, determining a first optimization plan according to the first statistical data and the first reference configuration information, and optimizing the first KPI; and determining, by a centralized optimization functional entity, second statistical data that is based on a second time granularity, and a second KPI, determining second reference configuration information, determining, according to the second statistical data and the second reference configuration information.