Abstract:
Embodiments of the present disclosure provide an OFDMA transmission method, an access point (AP), and a station. The method includes: allocating, by an access point AP, a same resource unit (RU) to multiple stations, where the RU includes one or more subcarriers in a frequency domain; and sending, by the AP and on the same RU, downlink data to the multiple stations in a time division multiplexing manner or a code division multiplexing manner, and sending, by the AP and on the same RU, pilot symbols to the multiple stations. In this way, the AP may send, on the same RU, the downlink data and the pilot symbols to the multiple stations within a limited time, thereby improving resource utilization efficiency.
Abstract:
A peak-to-average ratio reduction method, including dividing subcarriers of an orthogonal frequency division multiplexing (OFDM) symbol that carries to-be-transmitted data to obtain multiple blocks, determining multiple phase factors corresponding to the multiple blocks, where the multiple phase factors reduce a peak-to-average ratio of the OFDM symbol, transmitting the multiple phase factors using a particular subcarrier of the OFDM symbol, multiplying data transmitted on each block in the multiple blocks by a corresponding phase factor, and transmitting data obtained by means of multiplication. Phase factor information of each block is transmitted using the particular subcarrier such that application of a partial transmit sequence (PTS) method in a WI-FI system becomes possible, thereby effectively reducing a peak-to-average power ratio (PAPR) of data.
Abstract:
A method for interference cancellation is provided. The method includes: determining, by a first base station, a channel parameter from a transmit antenna of a second base station to a receive antenna of the first base station; receiving, by the first base station, a first signal using a first resource, where the first signal includes: a first interference signal and an uplink wanted signal, and the first interference signal is an interference signal generated when a downlink second signal is sent by the second base station by using the first resource; receiving, by the first base station, reconstruction information that is of the second signal and that is sent by the second base station; and determining, by the first base station, the first interference signal in the first signal according to the channel parameter and the reconstruction information of the second signal, and canceling the first interference signal.
Abstract:
An antenna system, including: M transmit antenna pairs, where two transmit antennas of each transmit antenna pair are symmetrically distributed on both sides of a same symmetry axis; N receive antenna pairs, where two receive antennas of each receive antenna pair are symmetrically distributed on both sides of the symmetry axis; M dividing devices, which are one-to-one corresponding to the M transmit antenna pairs, and each dividing device is configured to: divide one transmit signal into two transmit signals and separately send the two transmit signals to a corresponding transmit antenna pair; and N combining devices, which are one-to-one corresponding to the N receive antenna pairs. Each combining device is configured to combine two receive signals received by a corresponding receive antenna pair into one receive signal. One of the dividing device and the combining device is an in-phase dividing device, and the other is an out-of-phase combining device.
Abstract:
The present invention provides a D2D communication method and a D2D communication device. The method includes: determining a second time slot for transmitting D2D data according to a first time slot for transmitting D2D signaling to a D2D receiver and a synchronous transmission relationship between the D2D signaling and the D2D data, the second time slot being after the first time slot; determining a third time slot for transmitting uplink control information in cellular communication according to the second time slot, the uplink control information being used for indicating an uplink radio resource in the second time slot, and the third time slot being before the second time slot; demodulating the uplink control information in the third time slot to acquire the uplink radio resource in the second time slot; multiplexing the uplink radio resource in the second time slot to perform D2D communication with the D2D receiver.
Abstract:
A downlink channel estimation method and system, and a mobile terminal. In the method, a first mobile terminal is located in a central area of a cell, a second mobile terminal is located in an edge area of the cell, and a resource block of the second mobile terminal is adjacent to a resource block of the first mobile terminal, so that the first mobile terminal can use a data signal transmitted from a base station to the second mobile terminal to perform downlink channel estimation, thereby improving the accuracy of the downlink channel estimation, and enhancing the performance of the downlink channel estimation.
Abstract:
Embodiments of the present invention provide a precoding processing method, a base station, and a communications system. The precoding processing method includes: implementing beamforming on an antenna array according to information about a direction of arrival of a user equipment to obtain a transformation matrix; transforming a channel matrix according to the transformation matrix to obtain an equivalent channel matrix; and obtaining a precoding matrix required for precoding processing according to the equivalent channel matrix. According to the embodiments of the present invention, after a MIMO system is implemented based on a single antenna array, signals transmitted between the UE and the base station are orthogonal in each beam direction, thereby obtaining a degree-of-freedom gain.
Abstract:
The present invention provides a method and an apparatus for handling full-duplex interference. One method includes: obtaining an interference degree that is caused when a site device performs full-duplex transmission with at least two UEs; and determining, according to the interference degree, a UE allowed to transmit uplink and downlink signals on the same time and frequency resource among the at least two UEs. In embodiments of the present invention, a UE allowed to transmit uplink and downlink signals on the same time and frequency resource may be classified according to an interference degree that is caused when a site device performs full-duplex transmission with at least two UEs, thereby preventing the interference problem in the scenario of point-to-multipoint full-duplex communication as much as possible.
Abstract:
The present invention provides a method and an apparatus for handling full-duplex interference. One method includes: obtaining an interference degree that is caused when a site device performs full-duplex transmission with at least two UEs; and determining, according to the interference degree, a UE allowed to transmit uplink and downlink signals on the same time and frequency resource among the at least two UEs. In embodiments of the present invention, a UE allowed to transmit uplink and downlink signals on the same time and frequency resource may be classified according to an interference degree that is caused when a site device performs full-duplex transmission with at least two UEs, thereby preventing the interference problem in the scenario of point-to-multipoint full-duplex communication as much as possible.
Abstract:
Embodiments of the present invention provide a communication system and management method thereof. The communication system includes: a radio transceiving layer, including a radio transceiving node combination, where the radio transceiving node combination includes at least one type of the following: a macro cell RRU, a Pico cell RRU, and a Pico cell BRU; a local computing layer, including a local computing node, connected to a radio transceiving node in one or multiple neighboring radio transceiving node combinations and configured to execute all communication processing or a first part of communication processing of a cell corresponding to the local computing node; a centralized computing layer, including a centralized computing node, connected to the local computing node in the local computing layer and configured to execute a second part of communication processing, where the all communication processing includes the first part and second part of communication processing.