Abstract:
An optical device comprises a first optical coupler configured to receive a light signal and provide a first output and a second output, a first optical waveguide in optical communication with the first output and configured to provide a first optical path for a first portion of the light signal, and a second optical waveguide in optical communication with the second output and configured to provide a second optical path for a second portion of the light signal, wherein the first optical waveguide is configured to provide a phase differential between the first optical path and the second optical path, wherein the second optical waveguide is positioned according to a lateral thermal diffusion length associated with the first optical waveguide, and wherein the lateral thermal diffusion length is a spreading distance of a thermal effect in a direction about perpendicular to the first optical path.
Abstract:
A photonic platform based polarization controller providing a fixed target polarization is disclosed. The polarization controller has a polarization rotator splitter splitting the beam into first and second feeds corresponding to first and second orthogonal polarization components. A first Mach-Zehnder interferometer (MZI) stage provides a first phase delay between the first and second feeds based on a first control signal, and a first mixer mixes the first and second feeds to provide third and fourth feeds. A second MZI stage provides a second phase delay between the third and fourth feeds based on a second control signal, and a second mixer mixes the third and fourth feeds to provide fifth and sixth feeds. A third MZI stage provides a third phase delay between the fifth and sixth feeds based on a third control signal, and a third mixer mixes the fifth and sixth feeds to provide the fixed target polarization. An optical tap splits a portion of the beam.
Abstract:
A tunable optical filter including a first coupler configured divide an optical signal into a first portion and a second portion, a first waveguide configured to receive the first portion of the optical signal, a second waveguide configured to receive the second portion of the optical signal, an adjustable phase element operatively coupled to the first waveguide for adjusting an optical path length of the first waveguide, a P-I-N junction operatively coupled to one of the first waveguide and the second waveguide for introducing a loss into one of the first portion of the optical signal and the second portion of the optical signal, and a second coupler operatively coupled to the first waveguide and the second waveguide, wherein the second coupler is configured to recombine the first portion of the optical signal with the second portion of the optical signal to generate a spectrally modulated optical signal.
Abstract:
An embodiment waveguide polarization rotator includes an optical waveguide and an overlay strip. The optical waveguide has an input end and an output end oppositely disposed thereon. The optical waveguide is operable to receive, at the input end, an input optical signal having a mode having an input polarization. The optical waveguide is further operable to generate, at the output end, an output optical signal having an output polarization orthogonal to the input polarization. The overlay strip is disposed over and non-orthogonally crosses the optical waveguide. The overlay strip has a first end laterally offset from the optical waveguide by a first offset distance and a second end laterally offset from the optical waveguide by a second offset distance.