Abstract:
Chromatic dispersion is pre-compensated in a direct-detected orthogonal frequency-division multiplexed optical transmitter through digital signal processing methods, to generate signals that can be transmitted over an optical fiber. The dispersion pre-compensation digital signal processing may include multiplying subcarriers by a respective factor. The dispersion pre-compensation digital signal processing may instead include application of a finite impulse response filter to signals. The dispersion pre-compensation digital signal processing may instead include fast Fourier transformations of signals, application of a frequency domain filter to signals generated by the fast Fourier transformations, and inverse fast Fourier transformations of the signals produced by application of the frequency domain filter.
Abstract:
System and method embodiments are provided for improving reception of direct detection optical signals. In an embodiment, a method for optical transmission includes bit loading and power loading, with a digital signal processor (DSP), transmission bits of an orthogonal frequency-division multiplexing (OFDM) signal; calculating, with the DSP, a signal-signal beat interference (SSBI) component of the bit and power loaded OFDM signal by modulating each subcarrier with a symbol; and subtracting, with the DSP, the calculated SSBI component from the bit and power loaded OFDM signal.
Abstract:
System and method embodiments are provided for improving reception of direct detection optical signals. In an embodiment, a method for optical transmission includes bit loading and power loading, with a digital signal processor (DSP), transmission bits of an orthogonal frequency-division multiplexing (OFDM) signal; calculating, with the DSP, a signal-signal beat interference (SSBI) component of the bit and power loaded OFDM signal by modulating each subcarrier with a symbol; and subtracting, with the DSP, the calculated SSBI component from the bit and power loaded OFDM signal.
Abstract:
An action control method and apparatus related to the field of artificial intelligence, where the method includes obtaining states of N dimensions of an artificial intelligence device, obtaining a plurality of discrete decisions based on an active fuzzy subset and a control model that are of a state of each of the N dimensions, where an active fuzzy subset of a state is a fuzzy subset whose membership degree of the state is not zero, the membership degree is used to indicate a degree that the state belongs to the fuzzy subset, performing, based on a membership degree between a state and an active fuzzy subset that are of each dimension, weighted summation on the plurality of discrete decisions, to obtain a continuous decision, and controlling, based on the continuous decision, the artificial intelligence device to execute a corresponding action.
Abstract:
A method for managing file system replication can include: collecting event data associated with file system events, each of the file system events indicative of a modification of at least one file at a first file system location; for each of the file system events, generating at least one file system action to apply the modification of the at least one file at the first file system location to at least one corresponding file at a second file system location; storing the at least one generated file system action in an action buffer; identifying dependencies between file system actions in the action buffer; and scheduling the file system actions in the action buffer for execution based on the dependencies.
Abstract:
The invention provides a method, an apparatus and a system for controlling network congestion. The method includes: sending a control frame or a beacon frame to a station in a network when network congestion occurs, so as to instruct the station to enlarge a contention window when the station needs to send data. The method can achieve the congestion control for a network before collision occurs to a station, avoiding more serious network congestion caused by each station still contending for a channel after the network congestion occurs; since an access point can send a control frame or a beacon frame to the station when determining that congestion occurs to the current network, to instruct the station which needs to send data to re-determine a backoff time, a rapidly congestion relief of the whole network is achieved, and also a fair channel contention of each station is guaranteed.
Abstract:
An optical circuit switching matrix includes a plurality of optical ports, each optical port being optically coupled to a respective one of a plurality of user nodes and an optical coupler having at least one input port optically coupled to the plurality of optical ports, and an output port. The optical circuit switching matrix also includes a wavelength demultiplexer having an input optically coupled to the output port of the optical coupler, and a plurality of output ports, each output port being optically coupled to a respective one of the plurality of optical ports.
Abstract:
An optical circuit switching matrix includes a plurality of optical ports, each optical port being optically coupled to a respective one of a plurality of user nodes and an optical coupler having at least one input port optically coupled to the plurality of optical ports, and an output port. The optical circuit switching matrix also includes a wavelength demultiplexer having an input optically coupled to the output port of the optical coupler, and a plurality of output ports, each output port being optically coupled to a respective one of the plurality of optical ports.
Abstract:
An apparatus comprises a digital signal processing module configured to receive a data stream and generate a plurality of digital multiple tones, a plurality of digital-to-analog converters coupled to the digital signal processing module, a plurality of drivers coupled to respective digital-to-analog converters, an electro-optic modulator having inputs coupled to the drivers and outputs coupled to a fiber and a multi-wavelength light source coupled to the electro-optic modulator.
Abstract:
Embodiments of the present invention relate to a data transmission method, an access point, a relay node, and a data node for packet aggregation. The data transmission method for packet aggregation includes: determining an aggregation relay node in a service area, for aggregating a Medium Access Control (MAC) frame that is sent by a data node to an access point (AP) and is forwarded by the aggregation relay node; and receiving an aggregated MAC frame sent by the aggregation relay node, where the aggregated MAC frame is a MAC frame that is sent by the data node and is aggregated by the aggregation relay node. According to the embodiments of the present invention, a relay node is selectively used to aggregate data, so that aggregated packet data quickly reaches a scale for transmission, and the packet data is sent to a destination node within a short time, thereby significantly enhancing quality of service of a delay-sensitive application service.