摘要:
A switching power converter including an upper-bridge switch, a lower-bridge switch, an impedance circuit, a first control circuit, a second control circuit and a logic circuit is provided. The impedance circuit generates an output voltage and a sensing current according to a conductive state of the upper-bridge switch and the lower-bridge switch. The first control circuit generates a first pulse signal according to the output voltage. The second control circuit has a first mode and a second mode for generating a second pulse signal and a third pulse signal individually. Furthermore, the second control circuit uses different threshold values in different modes to determine whether to switch the mode thereof, so as to form a hysteretic effect in mode switching. The logic circuit controls the upper-bridge switch by the first pulse signal, and controls the lower-bridge switch by the second pulse signal or the third pulse signal.
摘要:
A multi-phase DC-DC controller. The multi-phase DC-DC controller comprises converter channels, a channel control device and a power control device. Each converter channel comprises a switch device, a first output node and an inductor coupled between the switch device and the first output node. The channel control device generates adjusted pulse width modulation signals according to control signals of the converter channels to respectively control operation of the switch device in each converter channel. The power control device generates the control signals according to sensed currents in the converter channels so as to dynamically turn on or off each converter channel according to the sensed currents.
摘要:
A multi-phase DC-DC converter is provided. A plurality of switching sets are coupled to an output, wherein each switching set includes a phase node. A plurality of inductors are separately coupled between the phase nodes and the output. A sense circuit has a plurality of sense units separately coupled to the phase nodes, each sensing a signal from the corresponding phase node and generating a sensing signal. A PWM generator includes a plurality of subtracting units, each subtracting a first signal from one of the sensing signals to generate a difference signal, wherein the first signal is generated by summing each of the sensing signals divided by a predetermined value except for the one of the sensing signals. The PWM generator generates a plurality of PWM signals to balance the currents of the inductors according to the difference signals.
摘要:
A DC-DC controller and an operation method thereof are provided. The DC-DC controller is configured to connect an output stage. The DC-DC controller includes a pulse width modulation (PWM) calculation circuit, a load transient detection circuit, and an override time calculation circuit. The PWM calculation circuit provides a PWM signal to the output stage. The load transient detection circuit receives an input signal related to an output voltage of the output stage. The load transient detection circuit provides a control signal according to the input signal and a predetermined input signal. The override time calculation circuit provides an override control signal with a predetermined time to the PWM calculation circuit according to the control signal. The PWM calculation circuit adjusts a duty cycle of the PWM signal according to the override control signal.
摘要:
A DC-DC converter is provided. When a load of the DC-DC converter is too light, the DC-DC converter can raise a frequency of its PWM signal, and reduce a pulse width of the PWM signal, so as to avoid the frequency of the PWM signal falling into a frequency range that can heard by human's ear and maintain high conversion efficiency of the DC-DC converter.
摘要:
A DC-DC converter and a voltage conversion method thereof are provided. The DC-DC converter includes an output unit, a control unit and a trigger unit. The output unit converts an input voltage into an output voltage. The control unit generates a control signal according to the input voltage, an output feedback voltage related to the output voltage and a reference voltage, so as to make the output unit generate the output voltage. The trigger unit generates a first trigger signal according to the control signal, the output feedback voltage and the reference voltage. When the output feedback voltage is less than the reference voltage by a preset voltage, the control unit controls the output unit to perform a voltage-regulating process to the output voltage in advance.
摘要:
A current balancer suitable for a multi-phase power converting device is provided. The current balancer includes an error detection unit and a plurality of pulse control units. Each of the pulse control units includes a current-to-voltage converter, a charging and discharging controller, a capacitor, and a comparator. The error detection unit detects a plurality of channel currents generated by the multi-phase power converting device, and generates a plurality of error currents by calculating. The charging and discharging controller provides a charging voltage or a discharging voltage according to a constant pulse-width modulation (PWM) signal. When the channel currents are balanced, the comparator generates a PWM signal with a constant duty cycle. When the channel currents are not balanced, an error voltage generated by the current-to-voltage converter is used to adjust a voltage level of the charging voltage or the discharging voltage, so that the PWM signal is varied correspondingly.
摘要:
A current balancer suitable for a multi-phase power converting device is provided. The current balancer includes an error detection unit and a plurality of pulse control units. Each of the pulse control units includes a current-to-voltage converter, a charging and discharging controller, a capacitor, and a comparator. The error detection unit detects a plurality of channel currents generated by the multi-phase power converting device, and generates a plurality of error currents by calculating. The charging and discharging controller provides a charging voltage or a discharging voltage according to a constant pulse-width modulation (PWM) signal. When the channel currents are balanced, the comparator generates a PWM signal with a constant duty cycle. When the channel currents are not balanced, an error voltage generated by the current-to-voltage converter is used to adjust a voltage level of the charging voltage or the discharging voltage, so that the PWM signal is varied correspondingly.
摘要:
A multi-phase DC-DC converter is provided. A plurality of switching sets are coupled to an output, wherein each switching set includes a phase node. A plurality of inductors are separately coupled between the phase nodes and the output. A sense circuit has a plurality of sense units separately coupled to the phase nodes, each sensing a signal from the corresponding phase node and generating a sensing signal. A PWM generator includes a plurality of subtracting units, each subtracting a first signal from one of the sensing signals to generate a difference signal, wherein the first signal is generated by summing each of the sensing signals divided by a predetermined value except for the one of the sensing signals. The PWM generator generates a plurality of PWM signals to balance the currents of the inductors according to the difference signals.
摘要:
A DC-DC converter used to convert an input voltage to an output voltage is disclosed. The DC-DC converter comprises a pulse-width-modulation (PWM) generator, a transient boost circuit, a logic circuit, a switching device, and a buck circuit. The pulse-width-modulation (PWM) generator generates a PWM signal according to the output voltage. The transient boost circuit generates an adjusting signal according to the variation of the output voltage. The logic circuit generates a switch signal according to the PWM signal and the adjusting signal. The switching signal is at a high level when the PWM signal or the adjusting signal is at the high level, and the switching signal is at a low level when the PWM signal and the adjusting signal are at the low level. The switching device converts the input voltage to a driving signal according to the switching signal. The buck circuit receives the driving signal to generate the output voltage.