Performance of Complex Optimization Tasks with Improved Efficiency Via Neural Meta-Optimization of Experts

    公开(公告)号:US20230040793A1

    公开(公告)日:2023-02-09

    申请号:US17870462

    申请日:2022-07-21

    Applicant: Google LLC

    Abstract: Example systems perform complex optimization tasks with improved efficiency via neural meta-optimization of experts. In particular, provided is a machine learning framework in which a meta-optimization neural network can learn to fuse a collection of experts to provide a predicted solution. Specifically, the meta-optimization neural network can learn to predict the output of a complex optimization process which optimizes over outputs from the collection of experts to produce an optimized output. In such fashion, the meta-optimization neural network can, after training, be used in place of the complex optimization process to produce a synthesized solution from the experts, leading to orders of magnitude faster and computationally more efficient prediction or problem solution.

    METHODS, SYSTEMS, AND MEDIA FOR RELIGHTING IMAGES USING PREDICTED DEEP REFLECTANCE FIELDS

    公开(公告)号:US20200372284A1

    公开(公告)日:2020-11-26

    申请号:US16616235

    申请日:2019-10-16

    Applicant: Google LLC

    Abstract: Methods, systems, and media for relighting images using predicted deep reflectance fields are provided. In some embodiments, the method comprises: identifying a group of training samples, wherein each training sample includes (i) a group of one-light-at-a-time (OLAT) images that have each been captured when one light of a plurality of lights arranged on a lighting structure has been activated, (ii) a group of spherical color gradient images that have each been captured when the plurality of lights arranged on the lighting structure have been activated to each emit a particular color, and (iii) a lighting direction, wherein each image in the group of OLAT images and each of the spherical color gradient images are an image of a subject, and wherein the lighting direction indicates a relative orientation of a light to the subject; training a convolutional neural network using the group of training samples, wherein training the convolutional neural network comprises: for each training iteration in a series of training iterations and for each training sample in the group of training samples: generating an output predicted image, wherein the output predicted image is a representation of the subject associated with the training sample with lighting from the lighting direction associated with the training sample; identifying a ground-truth OLAT image included in the group of OLAT images for the training sample that corresponds to the lighting direction for the training sample; calculating a loss that indicates a perceptual difference between the output predicted image and the identified ground-truth OLAT image; and updating parameters of the convolutional neural network based on the calculated loss; identifying a test sample that includes a second group of spherical color gradient images and a second lighting direction; and generating a relit image of the subject included in each of the second group of spherical color gradient images with lighting from the second lighting direction using the trained convolutional neural network.

    Methods, systems, and media for relighting images using predicted deep reflectance fields

    公开(公告)号:US10997457B2

    公开(公告)日:2021-05-04

    申请号:US16616235

    申请日:2019-10-16

    Applicant: Google LLC

    Abstract: Methods, systems, and media for relighting images using predicted deep reflectance fields are provided. In some embodiments, the method comprises: identifying a group of training samples, wherein each training sample includes (i) a group of one-light-at-a-time (OLAT) images that have each been captured when one light of a plurality of lights arranged on a lighting structure has been activated, (ii) a group of spherical color gradient images that have each been captured when the plurality of lights arranged on the lighting structure have been activated to each emit a particular color, and (iii) a lighting direction, wherein each image in the group of OLAT images and each of the spherical color gradient images are an image of a subject, and wherein the lighting direction indicates a relative orientation of a light to the subject; training a convolutional neural network using the group of training samples, wherein training the convolutional neural network comprises: for each training iteration in a series of training iterations and for each training sample in the group of training samples: generating an output predicted image, wherein the output predicted image is a representation of the subject associated with the training sample with lighting from the lighting direction associated with the training sample; identifying a ground-truth OLAT image included in the group of OLAT images for the training sample that corresponds to the lighting direction for the training sample; calculating a loss that indicates a perceptual difference between the output predicted image and the identified ground-truth OLAT image; and updating parameters of the convolutional neural network based on the calculated loss; identifying a test sample that includes a second group of spherical color gradient images and a second lighting direction; and generating a relit image of the subject included in each of the second group of spherical color gradient images with lighting from the second lighting direction using the trained convolutional neural network.

Patent Agency Ranking