Abstract:
A head-wearable device includes a center support extending in generally lateral directions, a first side arm extending from a first end of the center frame support and a second side arm extending from a second end of the center support. The device may further include a nosebridge that is removably coupled to the center frame support. The device may also include a lens assembly that is removably coupled to the center support or the nosebridge. The lens assembly may have a single lens, or a multi-lens arrangement configured to cooperate with display to correct for a user's ocular disease or disorder.
Abstract:
An electronic device includes a display and a band configured to be worn on the head of a user. The band defines a display end to which the display is affixed and extends from the display end to a free end. The band is adjustable such that it can be configured by a user to contact the head of the user at a first location near a temple, a second location along a portion of the user's ear adjacent the temple, and at a third location along a rear portion of the head of the user. The display end is positionable away from the head such that the display element is suspended over an eye adjacent the temple. The band is further configured to maintain the configuration. The device also includes image generating means within the band for generating an image presentable to the user on the display.
Abstract:
Aspects of the present disclosure provide computer implemented techniques to generate textile patterns that are optimized according to a predicted fabric behavior in different orientations. By orienting a “bias” of a fabric based on a number of textile panels being produced from the fabric, the textile panels can be configured to take full advantage of the fabric's properties. Orientation parameters for positioning the panels may be calculated to maximize the number of panels that can be cut from the fabric. Automatic adjustments may be made to the parameters by analyzing the fabric's constraints. The user can also input these constraints and an amount of desired stretch in specific areas of the fabric. A mechanism may also be employed to create a 3D model covered by the fabric in order to further adjust the fabric's orientation.
Abstract:
The present disclosure provide techniques for creating a template piece of clothing that can accurately determine a best “fit” of apparel on the consumer. The template may be made of a highly stretchable material with embedded sensors at various locations, wherein the sensors detect an amount of pressure exerted thereon. The template may also include embedded tensile members, such that when the template is worn by the consumer, the tensile members can constrict, expand, or otherwise adapt to the body measurements of the consumer. The template can thereby effectively measure the size and shape of the consumer wearing the template. The information regarding the size and shape of the consumer obtained by the template be outputted to a computer or other readout, and used by the consumer in determining whether corresponding apparel will fit properly.
Abstract:
A head-mounted wearable device assembly is provided that includes a bone conduction transducer (BCT) and an elastomeric isolation member that provides acoustic isolation between the BCT and a housing of the head-mounted wearable device assembly. The elastomeric isolation member may be a polyurethane material having a hardness (durometer) on the order of 60 A. The material arrangement and durometer may be chosen to provide a frequency response and/or acoustic leakage within a predetermined range, which results in high quality sound reproduction for the wearer. The elastomeric isolation member may be secured to an interior portion of the housing by a pair of mounting posts. The elastomeric isolation member physically and acoustically separates the BCT from the interior of the housing and other components therein.