Defocus Blur Removal and Depth Estimation Using Dual-Pixel Image Data

    公开(公告)号:US20220375042A1

    公开(公告)日:2022-11-24

    申请号:US17626069

    申请日:2020-11-13

    Applicant: Google LLC

    Abstract: A method includes obtaining dual-pixel image data that includes a first sub-image and a second sub-image, and generating an in-focus image, a first kernel corresponding to the first sub-image, and a second kernel corresponding to the second sub-image. A loss value may be determined using a loss function that determines a difference between (i) a convolution of the first sub-image with the second kernel and (ii) a convolution of the second sub-image with the first kernel, and/or a sum of (i) a difference between the first sub-image and a convolution of the in-focus image with the first kernel and (ii) a difference between the second sub-image and a convolution of the in-focus image with the second kernel. Based on the loss value and the loss function, the in-focus image, the first kernel, and/or the second kernel, may be updated and displayed.

    Dark flash photography with a stereo camera

    公开(公告)号:US11490070B2

    公开(公告)日:2022-11-01

    申请号:US17322216

    申请日:2021-05-17

    Applicant: Google LLC

    Abstract: Scenes can be imaged under low-light conditions using flash photography. However, the flash can be irritating to individuals being photographed, especially when those individuals' eyes have adapted to the dark. Additionally, portions of images generated using a flash can appear washed-out or otherwise negatively affected by the flash. These issues can be addressed by using a flash at an invisible wavelength, e.g., an infrared and/or ultraviolet flash. At the same time a scene is being imaged, at the invisible wavelength of the invisible flash, the scene can also be imaged at visible wavelengths. This can include simultaneously using both a standard RGB camera and a modified visible-plus-invisible-wavelengths camera (e.g., an “IR-G-UV” camera). The visible and invisible image data can then be combined to generate an improved visible-light image of the scene, e.g., that approximates a visible light image of the scene, had the scene been illuminated during daytime light conditions.

    Dark Flash Photography With A Stereo Camera

    公开(公告)号:US20210274151A1

    公开(公告)日:2021-09-02

    申请号:US17322216

    申请日:2021-05-17

    Applicant: Google LLC

    Abstract: Scenes can be imaged under low-light conditions using flash photography. However, the flash can be irritating to individuals being photographed, especially when those individuals' eyes have adapted to the dark. Additionally, portions of images generated using a flash can appear washed-out or otherwise negatively affected by the flash. These issues can be addressed by using a flash at an invisible wavelength, e.g., an infrared and/or ultraviolet flash. At the same time a scene is being imaged, at the invisible wavelength of the invisible flash, the scene can also be imaged at visible wavelengths. This can include simultaneously using both a standard RGB camera and a modified visible-plus-invisible-wavelengths camera (e.g., an “IR-G-UV” camera). The visible and invisible image data can then be combined to generate an improved visible-light image of the scene, e.g., that approximates a visible light image of the scene, had the scene been illuminated during daytime light conditions.

    Dark Flash Photography With A Stereo Camera
    14.
    发明申请

    公开(公告)号:US20200077076A1

    公开(公告)日:2020-03-05

    申请号:US16120666

    申请日:2018-09-04

    Applicant: Google LLC

    Abstract: Scenes can be imaged under low-light conditions using flash photography. However, the flash can be irritating to individuals being photographed, especially when those individuals' eyes have adapted to the dark. Additionally, portions of images generated using a flash can appear washed-out or otherwise negatively affected by the flash. These issues can be addressed by using a flash at an invisible wavelength, e.g., an infrared and/or ultraviolet flash. At the same time a scene is being imaged, at the invisible wavelength of the invisible flash, the scene can also be imaged at visible wavelengths. This can include simultaneously using both a standard RGB camera and a modified visible-plus-invisible-wavelengths camera (e.g., an “IR-G-UV” camera). The visible and invisible image data can then be combined to generate an improved visible-light image of the scene, e.g., that approximates a visible light image of the scene, had the scene been illuminated during daytime light conditions.

Patent Agency Ranking