Abstract:
The present disclosure is directed to an assembly tool kit for a bundled tube fuel nozzle assembly. The assembly tool kit includes a plurality of pins. Each pin includes a shaft portion, a tapered portion coupled to a first end of the shaft portion, and a contoured portion coupled to a second end of the shaft portion. The contoured portion includes a cylindrical section and a frustoconical section. The tapered and shaft portions of each of the plurality of pins are positioned within a passage defined by one of a plurality of tubes forming a portion of a bundled tube fuel nozzle assembly. The contoured portion of each of the plurality of pins is positioned in one of a plurality of cap plate apertures. Each of the plurality of pins radially aligns one of the plurality of cap plate apertures with a corresponding tube of the plurality of tubes.
Abstract:
A bundled tube fuel nozzle includes a forward plate, an intermediate plate, an aft plate and an outer sleeve. The forward plate, the intermediate plate and the outer sleeve define a fuel plenum therebetween. An aft plate axially is spaced from the intermediate plate and the intermediate plate, the aft plate and the outer sleeve define a cooling air plenum. A plurality of tubes extends through the forward plate, the fuel plenum, the intermediate plate, the cooling air plenum and the aft plate. Each tube of the plurality of tubes extends through a respective tube opening defined by the aft plate. A radial gap is defined between an outer surface of each tube and an inner surface of the respective tube opening. The plurality of tubes comprises at least one tube that is radially loaded against the inner surface of the respective tube opening.
Abstract:
A fuel supply system for a gas turbine combustor includes a fuel distribution manifold. A first fuel circuit extends from the fuel distribution manifold in a first circumferential direction around an outer surface of the outer casing and provides for fluid communication from the fuel distribution manifold, through the outer casing and to at least one fuel injector disposed within the outer casing. A second fuel circuit extends from the fuel distribution manifold in a second circumferential direction around the outer surface of the outer casing. The second fuel circuit provides for fluid communication from the fuel distribution manifold, through the outer casing and to at least one fuel injector within the outer casing. In particular configurations, the fuel supply system includes a shield that surrounds at least a portion of the outer casing and at least partially encases the first fuel circuit and the second fuel circuit.
Abstract:
Aft frame assemblies for aft ends of gas turbine transition pieces comprise a body comprising a downstream facing seal surface on an aft end, wherein at least a portion of the downstream facing seal surface configured to be exposed to a combustion discharge stream, a heat shield disposed proximate the aft end of the body, wherein the heat shield is configured to deflect at least a portion of the combustion discharge stream away from the aft end of the body, and, one or more heat shield supports connected to the body and configured to at least partially restrict deflection of the heat shield back towards the body.
Abstract:
A crossfire tube assembly between adjacent combustors includes a first sleeve adapted to provide fluid communication from a first combustor and a second sleeve adapted to connect to provide fluid communication from a second combustor. The second sleeve extends at least partially inside the first sleeve. A bias is between the first and second sleeves.
Abstract:
A flow sleeve assembly for a combustor of a gas turbine includes an annular support sleeve disposed at a forward end of the flow sleeve assembly. The support sleeve includes a forward portion axially separated from an aft portion. An aft frame is disposed at an aft end of the flow sleeve assembly. An annular flow sleeve extends from the aft portion of the support sleeve towards the aft frame. The flow sleeve includes a forward end that is axially separated from an aft end. The forward end of the flow sleeve circumferentially surrounds the aft end of the support sleeve. An annular impingement sleeve extends between the aft end of the flow sleeve and the aft frame. A forward end of the impingement sleeve is connected to the aft end of the flow sleeve, and an aft end of the impingement sleeve is connected to the aft frame.
Abstract:
A system for providing fuel to a combustor of a gas turbine includes an annular fuel distribution manifold that at least partially defines a fuel plenum. The fuel distribution manifold includes a forward end axially separated from an aft end, a flange that extends radially outward and circumferentially around the forward end and an annular support ring that extends downstream from the flange. A LLI assembly extends downstream from the fuel distribution manifold. The LLI assembly includes a unibody liner that at least partially defines a primary combustion zone and a secondary combustion zone within the combustor. A LLI injector extends substantially radially through the unibody liner and provides for fluid communication through the unibody liner into the secondary combustion zone. A fluid conduit in fluid communication with the fuel plenum extends between the LLI injector and the fuel distribution manifold.
Abstract:
An assembly for use in a fuel injection system within a combustor of a combustion turbine engine is described. The assembly may include: a first port formed through an outer radial wall of the combustor and a second port formed through an inner radial wall. A plenum may be formed about the first port. A tube may be formed that has a first end positioned within the first port and a second end positioned within the second port. At the first end, the tube may be sized smaller than the first port such that two passages are defined therethrough: a first passage defined about an exterior of the tube; and a second passage defined through an interior of the tube.
Abstract:
A combustor cap assembly includes an impingement plate coupled to an annular shroud and a cap plate which is coupled to the impingement plate to form an impingement air plenum therebetween. The combustor cap assembly further includes a flow conditioning plate coupled to a forward end portion of the shroud. The flow conditioning plate includes an inner band portion, an outer band portion and an annular portion. The annular portion defines a plurality of flow conditioning passages. The inner band portion at least partially defines a cooling air plenum within the combustor cap assembly. The inner band portion defines an exhaust channel which is in fluid communication with the impingement air plenum and an exhaust outlet. The flow conditioning plate further defines a cooling air passage which provides for cooling air flow into the cooling air plenum.
Abstract:
The present application provides a fuel plenum for a micro-mixer combustor. The fuel plenum may include a first assembly plate with a first assembly plate aperture, a second assembly plate with a second assembly plate aperture, a fuel tube extending through the first assembly plate aperture of the first assembly plate and the second assembly plate aperture of the second assembly plate, and an installation insert positioned between the fuel tube and the first assembly plate aperture.