Abstract:
A method for fabricating thermal barrier coatings. The thermal barrier coatings are produced with a fine grain size by reverse co-precipitation of fine powders. The powders are then sprayed by a solution plasma spray that partially melts the fine powders while producing a fine grain size with dense vertical cracking. The coatings comprise at least one of 45%-65% Yb2O3 the balance zirconia (zirconium oxide), Yb/Y/Hf/Ta the balance zirconia (zirconium oxide) and 2.3-7.8% La, 1.4-5.1% Y and the balance zirconia (zirconium oxide) and are characterized by a thermal conductivity that is about 25-50% lower than that of thermal barrier coatings comprising YSZ. The thermal barrier coatings also are characterized by at least one of excellent erosion resistance, fracture toughness and abrasion resistance.
Abstract:
Coatings includes about 60 weight percent to about 90 weight percent of one or more fluorinated polymers, about 1 weight percent to about 7 weight percent of one or more erosion resistant fillers about 3 weight percent to about 9 weight percent of one or more anticorrosive pigments, about 1 weight percent to about 4 weight percent of one or more thixotropic agents, and about 1 weight percent to about 4 weight percent of one or more porosity reducing filler materials.
Abstract:
Various embodiments include honeycomb structures including an abradable material, and a method of applying such honeycomb structures to steel components of a gas turbine engine in order to reduce rub damage. Particular embodiments include a honeycomb structure having a plurality of cells, each cell of the plurality of cells including a cell wall surrounding a void, and an abradable material within the void of each cell of the plurality of cells, the abradable material including a metallic alloy and hollow particles.
Abstract:
Various embodiments include a dense abradable coating, a method of reducing rub damage to a turbine engine part by applying the dense abradable coating thereto, and a turbine engine part having the abradable coating thereon. Particular embodiments include a dense abradable coating including a pore-free metallic composite, a high-aluminum containing brittle alloy, and a plurality of hollow abradable particles.
Abstract:
A process based on the combined use of yttrium and magnesium to inhibit vanadium corrosion of high temperature parts of thermal equipment. The combined use of yttrium and magnesium, applied in a variable yttrium/magnesium ratio, compared with conventional magnesium inhibition, may reduce emission of magnesium vanadate and minimize losses of performance due to fouling of the high temperature parts, including in the presence of alkali metals. Further, compared with inhibition based on yttrium alone, it may reduce the inhibition cost and reinforce the protection against combined vanadium pentoxide and sodium sulfate corrosion.
Abstract:
A process based on the combined use of yttrium and magnesium to inhibit vanadium corrosion of high temperature parts of thermal equipment. The combined use of yttrium and magnesium, applied in a variable yttrium/magnesium ratio, compared with conventional magnesium inhibition, may reduce emission of magnesium vanadate and minimize losses of performance due to fouling of the high temperature parts, including in the presence of alkali metals. Further, compared with inhibition based on yttrium alone, it may reduce the inhibition cost and reinforce the protection against combined vanadium pentoxide and sodium sulfate corrosion.
Abstract:
Multilayered coatings include an adhesion base layer that can adhere to a metal substrate, and a top surface layer that has a surface roughness of less than or equal to about Ra 0.0254 μm, wherein at least one of the layers comprises a diamond-like carbon.
Abstract:
A method includes applying a material coating on a surface of a machine component using a thermal spray, wherein the material coating is formed from a combination of a hardfacing material and aluminum-containing particles. The method also includes thermally treating the material coating to generate an oxide layer comprising aluminum from the aluminum-containing particles, wherein the oxide layer is configured to reduce oxidation of the hardfacing material.
Abstract:
A high entropy ceramic (HEC) composition includes at least three different rare earth (RE) oxides and at least one of hafnium dioxide (HfO2) and zirconia oxide (ZrO2). The at least three different rare earth oxides being equimolar fractions. In one aspect, the high entropy ceramic (HEC) composition can be used in a thermal barrier coating.
Abstract:
A system includes a turbine combustor and one or more supply circuits configured to supply one or more fluids to the turbine combustor. The one or more supply circuits include at least a liquid fuel supply circuit fluidly coupled to a liquid fuel source and configured to supply a liquid fuel from the liquid fuel source to the turbine combustor. The system also includes a corrosion inhibitor injection system including a magnesium source storing a magnesium-based inhibitor that includes magnesium oxide (MgO) and an yttrium source storing an yttrium-based inhibitor that includes yttrium oxide (Y2O3). The corrosion inhibitor injection system is fluidly coupled to the turbine combustor and the one or more supply circuits, and is configured to inject the magnesium-based inhibitor and the yttrium-based inhibitor as vanadium corrosion inhibitors into the turbine combustor or the one or more supply circuits.