System and method for generating semantic annotations
    12.
    发明授权
    System and method for generating semantic annotations 有权
    用于生成语义注释的系统和方法

    公开(公告)号:US09251421B2

    公开(公告)日:2016-02-02

    申请号:US13918905

    申请日:2013-06-15

    Abstract: In accordance with one aspect of the present technique, a method is disclosed. The method includes receiving a new video from one or more sensors and generating a new content graph (CG) based on the new video. The method also includes comparing the new CG with a plurality of prior CGs. The method further includes identifying a first portion of the new CG matching a portion of a first prior CG and a second portion of the new CG matching a portion of the second prior CG. The method further includes analyzing a first set of semantic annotations (SAs) associated with the portion of the first prior CG and a second set of SAs associated with the portion of the second prior CG. The method further includes generating a sequence of SAs for the new video based on the analysis of the first and the second set of SAs.

    Abstract translation: 根据本技术的一个方面,公开了一种方法。 该方法包括从一个或多个传感器接收新的视频,并且基于新的视频生成新的内容图形(CG)。 该方法还包括将新的CG与多个先前的CG进行比较。 该方法还包括识别新CG匹配的第一部分,匹配第一先前CG的一部分和新CG匹配第二先前CG的一部分的第二部分。 该方法还包括分析与第一先前CG的部分相关联的第一组语义注释(SA)和与第二先前CG的部分相关联的第二组SA。 该方法还包括基于对第一和第二组SA的分析来生成用于新视频的SA序列。

    SYSTEM AND METHOD FOR GENERATING SEMANTIC ANNOTATIONS
    13.
    发明申请
    SYSTEM AND METHOD FOR GENERATING SEMANTIC ANNOTATIONS 有权
    用于生成语义注释的系统和方法

    公开(公告)号:US20140072171A1

    公开(公告)日:2014-03-13

    申请号:US13918905

    申请日:2013-06-15

    Abstract: In accordance with one aspect of the present technique, a method is disclosed. The method includes receiving a new video from one or more sensors and generating a new content graph (CG) based on the new video. The method also includes comparing the new CG with a plurality of prior CGs. The method further includes identifying a first portion of the new CG matching a portion of a first prior CG and a second portion of the new CG matching a portion of the second prior CG. The method further includes analyzing a first set of semantic annotations (SAs) associated with the portion of the first prior CG and a second set of SAs associated with the portion of the second prior CG. The method further includes generating a sequence of SAs for the new video based on the analysis of the first and the second set of SAs.

    Abstract translation: 根据本技术的一个方面,公开了一种方法。 该方法包括从一个或多个传感器接收新的视频,并且基于新的视频生成新的内容图形(CG)。 该方法还包括将新的CG与多个先前的CG进行比较。 该方法还包括识别新CG匹配的第一部分,匹配第一先前CG的一部分和新CG匹配第二先前CG的一部分的第二部分。 该方法还包括分析与第一先前CG的部分相关联的第一组语义注释(SA)和与第二先前CG的部分相关联的第二组SA。 该方法还包括基于对第一和第二组SA的分析来生成用于新视频的SA序列。

    BIOLOGICAL UNIT SEGMENTATION WITH RANKING BASED ON SIMILARITY APPLYING A GEOMETRIC SHAPE AND SCALE MODEL
    14.
    发明申请
    BIOLOGICAL UNIT SEGMENTATION WITH RANKING BASED ON SIMILARITY APPLYING A GEOMETRIC SHAPE AND SCALE MODEL 有权
    基于相似性的生物单位分类应用几何形状和规模模型

    公开(公告)号:US20140023260A1

    公开(公告)日:2014-01-23

    申请号:US13666343

    申请日:2012-11-01

    Abstract: Embodiments of the disclosure are directed to segmenting a digital image of biological tissue into biological units, such as cells. A first weak or data driven segmentation is generated using image data representing the digital image to segment the digital image into a first set of biological units. Applying a geometric model, each unit in the first set of biological units is ranked based on a similarity in shape and scale between the unit and one or more other units in the image. A subset of units from the first set of biological units is selected based on the rank of each biological unit relative to a predetermined threshold rank. A second weak or data driven segmentation may then be generated using image data including the subset of biological units to segment that portion of the digital image into a second set of biological units.

    Abstract translation: 本公开的实施例涉及将生物组织的数字图像分割成诸如细胞的生物单元。 使用表示数字图像的图像数据来生成第一弱或数据驱动的分割,以将数字图像分割成第一组生物单元。 应用几何模型,基于图像中的单元和一个或多个其他单元之间的形状和尺度的相似性对第一组生物单元中的每个单元进行排序。 基于每个生物单元相对于预定阈值秩的等级来选择来自第一组生物单元的单元的子集。 然后可以使用包括生物单元的子集的图像数据来生成第二弱或数据驱动的分割,以将数字图像的该部分分割成第二组生物单元。

Patent Agency Ranking