Abstract:
Various methods and systems for spectral computed tomography imaging are provided. In one embodiment, a method comprises acquiring a first projection dataset and a second projection dataset, detecting a location of metal in the first projection dataset, applying corrections to the first and second projection datasets based on the location of the metal, and displaying an image reconstructed from the corrected first and second projection datasets. In this way, metal artifacts may be substantially reduced in dual or multi-energy CT imaging.
Abstract:
Methods and systems are provided for boosting the contrast levels in an image reconstructed from projection data acquired at a single energy. In one embodiment, a method comprises modifying projection data corresponding to a material based on an absorption behavior of the material at a selected energy, wherein the projection data is acquired at an energy higher than the selected energy. In this way, contrast levels may be enhanced in an image reconstructed from projection data acquired at a typical single energy as though the image were reconstructed from projection data acquired at a lower energy.
Abstract:
A method is provided including acquiring imaging data of an object to be imaged from a computed tomography (CT) detector. The method also includes reconstructing the acquired imaging data into an initial reconstruction image, and performing material characterization of an image volume of the initial reconstruction image to provide a re-mapped image volume. Further, the method includes performing forward projection on the re-mapped image volume to provide forward projection data, and providing an error projection based on the forward projection data. Also, the method includes filtering at least one of the initial reconstruction image, the re-mapped image volume, the forward projection data, or the error projection. The method also includes using the error projection to update the initial reconstruction image to provide an updated reconstruction image.
Abstract:
A system includes an energy-discriminating, photon-counting X-ray detector, comprising a plurality of detector cells providing measurements corresponding to at least two energy bins and being adapted to produce projection data in response to X-ray photons that reach the X-ray detector and to produce an electrical signal having a recorded count for the energy bins and a total energy intensity. The system also includes data processing circuitry adapted to receive the electrical signal from one or more of the plurality of detector cells, to generate a simulated count rate for each of the energy bins by using the total energy intensity in a detector pile-up model, to determine a set of energy intensity dependent material decomposition vectors, and, for the projection data measured by one or more of the plurality of detector cells, to perform material decomposition by modeling the simulated count rate for each of the energy bins and utilizing a material decomposition vector selected from the set of energy intensity dependent material decomposition vectors and corresponding to the measured energy intensity from one or more of the plurality of detector cells.
Abstract:
Systems and methods for iterative multi-material correction are provided. A system includes an imager that acquires projection data of an object. A reconstructor reconstructs the acquired projection data into a reconstructed image, utilizes the reconstructed image to perform a multi-material correction on the acquired projection data to generate a multi-material corrected reconstructed image, and utilizes the multi-material corrected reconstructed image to perform one or more iterations of the multi-material correction on the projection data to generate an iteratively corrected multi-material corrected image.
Abstract:
A method is provided. The method includes acquiring projection data of an object from a plurality of pixels, reconstructing the acquired projection data from the plurality of pixels into a reconstructed image, performing material characterization and decomposition of an image volume of the reconstructed image to reduce a number of materials analyzed in the image volume to two basis materials. The method also includes generating a re-mapped image volume for at least one basis material of the two basis materials, and performing forward projection on at least the re-mapped image volume for the at least one basis material to produce a material-based projection. The method further includes generating multi-material corrected projections based on the material-based projection and a total projection attenuated by the object, which represents both of the two basis materials, wherein the multi-material corrected projections include linearized projections.
Abstract:
Methods and systems are provided for boosting the contrast levels in an image reconstructed from projection data acquired at a single energy. In one embodiment, a method comprises modifying projection data corresponding to a material based on an absorption behavior of the material at a selected energy, wherein the projection data is acquired at an energy higher than the selected energy. In this way, contrast levels may be enhanced in an image reconstructed from projection data acquired at a typical single energy as though the image were reconstructed from projection data acquired at a lower energy.
Abstract:
Various methods and systems for spectral computed tomography imaging are provided. In one embodiment, a method comprises acquiring a first projection dataset and a second projection dataset, detecting a location of metal in the first projection dataset, applying corrections to the first and second projection datasets based on the location of the metal, and displaying an image reconstructed from the corrected first and second projection datasets. In this way, metal artifacts may be substantially reduced in dual or multi-energy CT imaging.
Abstract:
A method is provided including acquiring imaging data of an object to be imaged from a computed tomography (CT) detector. The method also includes reconstructing the acquired imaging data into an initial reconstruction image, and performing material characterization of an image volume of the initial reconstruction image to provide a re-mapped image volume. Further, the method includes performing forward projection on the re-mapped image volume to provide forward projection data, and providing an error projection based on the forward projection data. Also, the method includes filtering at least one of the initial reconstruction image, the re-mapped image volume, the forward projection data, or the error projection. The method also includes using the error projection to update the initial reconstruction image to provide an updated reconstruction image.
Abstract:
A method includes acquiring projection data of an object from a plurality of detector elements, reconstructing the acquired projection data into a first reconstructed image, and performing material characterization of an image volume of the first reconstructed image to reduce a number of materials analyzed in the image volume to two basis materials. Performing material characterization includes utilizing a generalized modeling function to estimate a fraction of at least one basis material within each voxel of the image volume. The method also includes generating a re-mapped image volume for the at least one basis material of the two basis materials, performing forward projection on at least the re-mapped image volume for the at least one basis material to produce a material-based projection, and generating multi-material corrected projections based on the material-based projection and a total projection attenuated by the object, which represents both of the two basis materials.