Abstract:
The present approach relates to the use of detector elements (i.e., reference detector pixels) positioned under septa of an anti-scatter collimator. Signals detected by the reference detector pixels may be used to correct for charging-sharing events with adjacent pixels and/or to characterize or correct for focal spot misalignment either in real time or as a calibration step.
Abstract:
The present approaches relates to the use of silicon-based energy-discriminating, photon-counting detectors, such as for use in X-ray based imaging including computed tomography. The described approaches address the resolution and classification of X-ray photons affected by Compton scatter, which may be detected as having energy levels below their proper level due to collision or deflection events.
Abstract:
A SiPM readout circuit includes a front-end circuit having amplifiers coupled to SiPM analog outputs, pixel readout channels coupled to amplifiers provide a timing signal representing gamma ray photon detection in individual SiPM, a block timing channel that creates a summed signal from all SiPMs, and generates a block timing signal and a validation signal, an energy channel that generates a summed energy signal and a two-dimensional position of the gamma ray photon detection in the block, and a control logic/processing circuit that performs a time stamp estimation method. Methods of determining the radiation event timing and a non-transitory computer-readable medium containing computer-readable instructions to implement the methods are disclosed.
Abstract:
A detector is described having readout electronics integrated in the photodetector layer. The detector may be configured to acquire both energy-integrated and photon-counting data. In one implementation, the detector is also configured with control logic to select between the jointly generated photon-counting and energy-integrated data.
Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a solid state photomultiplier may include a plurality of pixels, wherein each pixel of the plurality of pixels comprises a plurality of subpixels; and a first set of buffer amplifiers, wherein each buffer amplifier of the first set of buffer amplifiers is respectively coupled to a subpixel of the plurality of subpixels.
Abstract:
A SiPM tile includes SiPM arrays on a detector die, each of the SiPM arrays including a first plurality of microcells and a second plurality of reference microcells dispersed on the die, each reference microcell including an optically-opaque mask, a readout circuit each including a respective charge sensitive amplifier (CSA) connected to one of the reference microcells, each CSA configured to accumulate the dark current of the reference microcell during a selected time window, a hybrid temperature control circuit configured to receive an output signal from each CSA, and to determine the real-time temperature of the die based on the received output signal, to provide the real-time temperature to a temperature compensation and correction control unit that adjusts a cooling/heating system flow provided to the die, the adjustment based on the real-time temperature. A method for compensating the operating temperature variation of the SiPM tile is also disclosed.
Abstract:
The present approach relates to the use of reference pixels provided between the primary pixels of a detector panel. Coincidence circuitry or logic may be employed so that the measured signal arising from the same X-ray event may be properly, that is the signal measured at both a reference and primary pixel may be combined so as to provide an accurate estimate of the measured signal, at an appropriate location on the detector panel.
Abstract:
Some embodiments are associated with an input signal comprising a first and a second photon event incident on a photon-counting semiconductor detector. A relatively slow charge collection shaping amplifier may receive the input signal and output an indication of a total amount of energy associated with the superposition of the first and second events. A relatively fast charge collection shaping amplifier may receive the input signal and output an indication that is used to allocate a first portion of the total amount of energy to the first event and a second portion of the total amount of energy to the second event.
Abstract:
Methods and systems are provided for medical imaging systems. In one embodiment, a method comprises estimating an external scatter contamination in emission data based on an estimated emission activity originating from anatomies outside a field-of-view (FOV) of a scanner, the anatomies identified based on an image segmentation analysis performed on an image generated in the imaging system, the image generated prior to acquiring the emission data. In this way, a scatter correction applied to the emission data may include both scatter originating within the FOV and outside the FOV, and hence may be more accurate.
Abstract:
The present approach relates to a detector design that allows detector-based wobble using an electronic control scheme. In one implementation, each detector pixel is divided into sub-pixels. The readout of the sub-pixels can be binned with minimal noise penalty to enable the detector wobble without physically shifting the detector or alternating the physical focal spot location, though, as discussed herein alternation of the focal spot location may be used in conjunction with the present approach to further improve radial and longitudinal imaging resolution as well as suppressing artifacts resulted by limited spatial sampling.