Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a solid state photomultiplier may include a microcell configured to generate an analog signal when exposed to optical photons, a quench resistor electrically coupled to the microcell in series; and a first switch disposed between the quench resistor and an output of the solid state photomultiplier, the first switch electrically coupled to the microcell via the quench resistor and configured to selectively couple the microcell to the output.
Abstract:
A compensating current is applied at one or more points in a signal processing path to compensate for one or both of a dark or offset current present in an input signal. In certain implementations, the dark or offset current is present in a signal generated by a photomultiplier device. The dark or offset current may be monitored in an output of the signal processing path and, the monitoring being used to determine how much compensation is needed in the signal processing path and to allocate where in the signal processing path the compensation current will be applied.
Abstract:
A multiplexing circuit for a positron emission tomography (PET) detector includes a delay circuit and a multiplexer communicating with the delay circuit. The delay circuit configured to receive a plurality of timing pickoff (TPO) signals from a plurality of positron emission tomography (PET) detector units, add a delay time to at least one of the plurality of TPO signals, and transmit the TPO signals based on the delay time to the multiplexer, the multiplexer configured to a multiplex the TPO signals and output a single TPO signal from the plurality of TPO signals to a Time-to-Digital Convertor (TDC). A method of operating a multiplexer and a imaging system including a multiplexer are also provided.
Abstract:
A scintillator crystal array that is configured to receive rays emitted by an object to be imaged and to emit light energy responsive to the received rays includes plural crystals. At least one of the crystals includes an upper surface, a lower surface, and plural sides. The upper surface may be configured to receive the rays from the object to be imaged. The lower surface is disposed opposite the upper surface. The plural sides extend between the upper surface and the lower surface. At least one side includes a roughened side surface and at least one other side includes a polished side surface.
Abstract:
Methods and systems for signal communication in gamma ray detectors are provided. One gamma ray detector includes a scintillator block having a plurality of scintillator crystals and a plurality of light sensors coupled to the scintillator crystals and having a plurality of microcells. Each of the plurality of light sensors have a local summing point in each of a plurality of signal summing regions, wherein the local summing points are connected to the plurality of microcells. The plurality of light sensors also each include a main summing point connected to the plurality of local summing points, wherein the main summing point is located a same distance from each of the local summing points.
Abstract:
A photon detector having an optical transparent plate and photodiode array interconnected by an optical light guide array. The optical light guide array including elements providing a transmission line between the optical transparent plate and the photodiode array, where the position of one or more optical light guide elements is formed to adjust for a miss-registered photodiode individual element. A method for assembling the photon detector includes depositing a non-wetting film on opposing surfaces of the optical transparent plate and/or photodiode array, altering the deposited non-wetting film in regions of individual photodiode elements, dispensing an optical coupler adhesive on the optical transparent plate and photodiode array to form adhesive beads, aligning the opposing surfaces, assembling the opposing surfaces so that the corresponding optical coupler adhesive beads contact each other, and curing the optical coupler adhesive to form a structurally merged photon detector having optical light guide elements.
Abstract:
In accordance with the present approach, a dark current is measured for one or more detector elements and used to determine a gain or gain compensation for the respective detector elements. In certain embodiments, the dark current is used to determine a temperature for the respective detector element and the temperature is used to determine the gain or gain compensation. In other embodiments, the dark current is used to calculate the gain or gain compensation for the respective detector element without calculating an intermediate temperature value, such as via the use of a transfer function.
Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a photosensor may include a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics. In some embodiments, a solid state photomultipler may include a microcell having; a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics.
Abstract:
A scintillator crystal array that is configured to receive rays emitted by an object to be imaged and to emit light energy responsive to the received rays includes plural crystals. At least one of the crystals includes an upper surface, a lower surface, and plural sides. The upper surface may be configured to receive the rays from the object to be imaged. The lower surface is disposed opposite the upper surface. The plural sides extend between the upper surface and the lower surface. At least one side includes a roughened side surface and at least one other side includes a polished side surface.
Abstract:
Methods and systems for a light sensor for a gamma ray detector of a positron emission tomography (PET) imaging system is provided. The methods and systems include a plurality of micro-cells forming a micro-cell array. The methods and systems include a set of signal traces electrically coupling the plurality of micro-cells to the pin-out. The set of signal traces are configured to define a non-orthogonal signal path from each of the micro-cells to the pin-out.