Abstract:
A conductive film has a polygonal wiring pattern which allows an indicator of evaluation of noises to be equal to or less than an evaluation threshold value. Here, from at least one point of view, in frequencies and intensities of noises each calculated for each color from first and second peak frequencies and first and second peak intensities of 2DFFT spectra of transmittance image data of a combined wiring pattern including a random mesh pattern of a plurality of thin metal lines of a wiring portion and luminance image data of a pixel array pattern of each color at the time of lighting on for each single color, the indicator of evaluation of noise is calculated from evaluation values of noises of the respective colors obtained by applying human visual response characteristics in accordance with an observation distance to intensities of the noises equal to or greater than a first intensity threshold value among intensities of the noises at frequencies of noises equal to or less than a frequency threshold value defined by a display resolution of a display unit.
Abstract:
An electroconductive film is provided on a display unit and has at least two wiring layers that are disposed on both sides of a transparent substrate or each disposed on either side of each of the at least two transparent substrates in a laminate form and are regularly arranged. A wiring pattern of the wiring layers is superimposed onto a pixel array pattern of the display unit, the wiring pattern of a lower layer being displaced in phase in relation to an upper layer. The electroconductive film satisfies: fm1≦fm2, when a first lowest frequency (fm1) is the lowest frequency of the moire spatial frequency, and a second lowest frequency (fm2) is the lowest frequency of the moire spatial frequency.
Abstract:
In the mesh pattern of the conductive sheet of the invention in which openings having different shapes are arrayed in plan view, a standard deviation of an area of each of the openings is equal to or greater than 0.017 mm2 and equal to or less than 0.038 mm2, in a two-dimensional distribution of centroid positions of the openings; a standard deviation for a root mean square deviation of each of the centroid positions which are disposed along a predetermined direction, with respect to a direction perpendicular to the predetermined direction is equal to or greater than 15.0 μm; or a standard deviation over a radial direction of a value expressed by a common logarithm of a standard deviation along an angular direction in a power spectrum of the mesh pattern is equal to or greater than 0.965 and equal to or less than 1.065.
Abstract:
This present invention pertains to: a conductive laminate body, a touch panel, and a display device. In the present invention, the relative refractive index of a substrate with respect to a first protective sheet, and/or the relative refractive index of the substrate with respect to a second protective sheet is 0.86-1.15. The relative refractive index of a first substrate with respect to the first protective sheet, and/or the relative refractive index of a second substrate with respect to the second protective sheet is 0.86-1.15.
Abstract:
A control device includes a first processor. The first processor is configured to acquire, at a time before a first moving object equipped with an imaging apparatus reaches a target position, brightness of an imaging target region imaged by the imaging apparatus from the target position, acquire a shutter speed corresponding to the brightness and a movement speed corresponding to the shutter speed, and cause, at the target position, the imaging apparatus to image the imaging target region with the shutter speed while causing the first moving object to move with the movement speed.
Abstract:
A point cloud data processing apparatus 11 includes a processor configured to acquire first form information that indicates a feature of a form of a first object, specify an object region of a second object that is identified from an image and that corresponds to the first form information, select second-object point cloud data, in point cloud data, that corresponds to the object region, on the basis of the object region, acquire second form information that indicates a feature of a form of the second object, on the basis of the second-object point cloud data, and compare the first form information with the second form information and perform determination as to whether the second object is the first object.
Abstract:
A point cloud data processing apparatus (11) includes: a memory (21) configured to store point cloud data (7) and pieces of image data (5), with positions of pixels of at least any one piece of image data (5) among the pieces of image data (5) being associated with points that constitute the point cloud data (7); and a processor, the processor being configured to cause a display unit (9) to display the point cloud data such that three-dimensional rotation, three-dimensional movement, and rescaling are enabled, accept a designation of a specified point in the point cloud data (7) displayed on the display unit (9), select a region of a target object including a region corresponding to the specified point, on the piece of image data (5), and assign the same attribute information to points, in the point cloud data (7), corresponding to the region of the target object.
Abstract:
A conductive film includes a wiring pattern having the following characteristics. For each spectrum in which spectrum peaks obtained by performing two-dimensional Fourier transform on transmittance image data of the entire image has normalized spectrum intensities equal to or greater than a specified value, an angle is set to oscillate by each unit of a specific angle. Intensity differences, each of which is obtained from a maximum value and a minimum value of the normalized spectrum intensity for each angle, are calculated. One or more clusters of bars, which indicate frequencies of a histogram at an average value or more of the intensity difference in a case where the histogram is a histogram of the intensity differences, are isolated from the other cluster. In addition, in a case where a second sample standard deviation indicating a variation of first sample standard deviations, each of which indicates a variation of the normalized spectrum intensities at a single angle, in all angular directions is calculated as a quantitative value of the wiring pattern, the quantitative value is in a specific numerical value range.
Abstract:
A conductive film is provided on the display unit such that the wiring patterns of the two wiring portions overlap with the pixel array patterns of the display unit. A projected wiring pattern, which is obtained when the wiring patterns of the two wiring portions having three-dimensional shapes are projected onto a plane perpendicular to a point of view, includes a regular wiring pattern which has a mesh shape, or an irregular wiring pattern which has mesh shapes and which is formed by making the regular wiring pattern irregular. An indicator of evaluation of moirés, which is caused by interference between a combined wiring pattern formed of the regular wiring pattern and projected pixel array patterns obtained when the pixel array patterns are projected onto the same plane, is equal to or less than an evaluation threshold value.
Abstract:
The present invention discloses a conductive film and a display apparatus provided with the conductive film. A conductive film is disposed on a display panel of a display apparatus, and has a base body, and a conductive section formed on one of the main surfaces of the base body. The conductive section has a mesh pattern composed of fine metal lines, and the fine metal lines have a tilt of 30-44° with respect to the alignment direction of pixels of the display apparatus.