Abstract:
An optical signal generating apparatus according to an embodiment of the inventive concept includes a first optical intensity modulator for modulating a first optical signal to generate a 2N-level (where N is a positive integer) second optical signal in the form of a binary signal, a first optical amplifier for amplifying the second optical signal to generate a third optical signal, and a second optical intensity modulator for modulating the third optical signal to generate a 2N+1-level fourth optical signal in the form of a binary signal. The optical signal generating apparatus according to an embodiment of the inventive concept may generate a low-cost, high-quality optical signal by using an optical device to generate a multi-level optical signal. Additionally, the optical signal generating apparatus according to an embodiment of the inventive concept may generate a multi-level optical signal by sequentially performing optical modulation and optical amplification operations.
Abstract:
A solar cell according to embodiments of the inventive concept includes a back electrode on a substrate, a first light absorbing layer including gallium (Ga) and indium (In) on the back electrode, a first buffer layer on the first light absorbing layer, a first window layer on the first buffer layer, a second light absorbing layer includingGa on the first window layer, a second buffer layer on the second light absorbing layer, and a second window layer on the second buffer layer, wherein a composition ratio of (Ga)/(Ga+In) of the first light absorbing layer is lower than that of the second light absorbing layer.
Abstract:
Provided is a single junction type GIGS thin film solar cell, which includes a CIGS light absorption layer manufactured using a single junction. The single junction type GIGS thin film solar cell includes a substrate, a back contact deposited on the substrate, a light absorption layer deposited on the back contact and including a P type GIGS layer and an N type GIGS layer coupled to the P type CIGS layer using a single junction, and a reflection prevention film deposited on the light absorption layer.
Abstract:
The present invention relates to a method of manufacturing a photonic integrated device based on single-step active layer epitaxial growth, and the method includes forming, on a substrate, a reference region having a first bandgap and a region having a bandgap, which is red-shifted relative to the first bandgap, through active layer epitaxial growth, and applying a blue-shift to the substrate to form a region having a second bandgap that is blue-shifted relative to the first bandgap.
Abstract:
Provided is a method of manufacturing an optical integrated device. The method includes forming a lower clad layer on a substrate, forming a plurality of mask patterns arranged in one direction on the lower clad layer, forming a core layer on a portion of the lower clad layer by a selective area growth method using the mask patterns as deposition masks, and forming an upper clad layer on the core layers, wherein the mask patterns have different widths or include mask layers of different materials.
Abstract:
Provided is a method of manufacturing a transition metal chalcogenide thin film including providing a substrate having a transition metal film thereon, evaporating a chalcogen source to form a chalcogen material having a second molecular structure, decomposing the chalcogen material having the second molecular structure to form the chalcogen material having the first molecular structure, in which the first molecular structure includes relatively less atoms than the second molecular structure, and providing the chalcogen material having the first molecular structure on a transition metal film.