Abstract:
A transceiving apparatus may comprise a radiator emitting a beam; a receiver receiving a beam; a first sub-reflector which is provided to face the radiator and changes an orbital angular momentum (OAM) mode order of a beam; a second sub-reflector which is provided to face the receiver and changes an OAM mode order of a beam differently from the first sub-reflector; and a main reflector which is provided to face the first sub-reflector and the second sub-reflector.
Abstract:
The present invention provides an array antenna apparatus for a rotation mode, a wireless communication terminal, and a method thereof. The apparatus according to the exemplary embodiment includes an antenna array including a plurality of antenna elements; and a control unit which determines an antenna pattern in accordance with a transmission/reception characteristic of a signal and assigns a weight to antenna elements in a position corresponding to the determined antenna pattern on the antenna array to implement a rotation mode antenna based on the antenna element to which the weight is assigned.
Abstract:
Provided is an apparatus and method for simultaneously transmitting and receiving orbital angular momentum (OAM) modes. An apparatus for transmitting OAM modes may include a mode multiplexing apparatus, and a matrix array antenna configured to output OAM modes for electromagnetic waves based on mode signals, wherein the mode multiplexing apparatus may include hybrid couplers configured to generate a plurality of output signals having different phases and different amplitudes by mixing and distributing a plurality of input signals, and phase shifters configured to generate the mode signals by shifting the phases of the output signals.
Abstract:
Disclosed is a method and apparatus for generating a radar signal, in which performance of radar detection is ensured while increasing a spectrum efficiency in a radar network. The method comprises generating a set of frequency-modulation waveforms, generating an orthogonal code set, generating a set of coded frequency-modulation waveforms through element operation between the set of frequency-modulation waveforms and the orthogonal code set, calculating an objective function for the set of frequency-modulation waveforms with regard to a different set of coded frequency-modulation waveforms and previous sets of coded frequency-modulation waveforms, and selecting a current polyphase code set as an optimized polyphase code set when a result of current calculation is better or smaller than a result of previous iteration, and performing phase perturbation by replacing an element randomly selected in the current polyphase code set selected as the optimized polyphase code set with another admissible-phase element.
Abstract:
The present disclosure relates to a wireless communication apparatus capable of increasing throughput using MIMO in an LOS environment and a method for the same. A wireless communication apparatus based on the LOS-MIMO technique may comprise a multi-link configuration unit, a frequency response correction unit, a signal compensation unit, and a feedback unit. In the apparatus, an additional LOS-MIMO equalizer is used at the front of an LOS-MIMO estimator and a coding unit in order to compensate in-band frequency characteristics of frequency response characteristics estimated by the LOS-MIMO estimator and a signal channel estimator, whereby the LOS-MIMO estimation performance can be remarkably enhanced. Also, precise separation of multiplexed signals through the above-described LOS equalizer can make it possible to increase transmission capacity by using the LOS-MIMO which can be applied to high-order mode (e.g., over 16 quadrature amplitude modulation (QAM)) digital communications.
Abstract:
Disclosed are a method for inter-beam interference reduction using cross polarization and a method for transmitting/receiving a signal. A transmitting method of a base station in a wireless communication system, includes: configuring a first parameter for forming a first beam having first polarization with respect to a terminal located in a first sub-sector, and configuring a second parameter for forming a second beam having second polarization with respect to a terminal located in a second sub-sector; and transmitting a signal to each terminal by forming the first beam using at least one antenna based on the configured first parameter and forming the second beam using the at least one antenna based on the configured second parameter, wherein a frequency band equal to a frequency band of the first sub-sector is allocated to the second sub-sector in a cell in the base station.
Abstract:
A spatial modulation method using a polarization and an apparatus using the same are provided. A spatial modulation method by a transmitting apparatus in a wireless communication system may comprise selecting an antenna to send data among transmit antennas arranged to have different polarization angles using a predetermined bit of input data based on indexes of the transmit antenna and mapping remaining bits of the input data to a preset constellation and transmitting the remaining bits of the mapped input data through the selected antenna.
Abstract:
A line of sight (LOS) multiple-input and multiple-output (MIMO) system and a method of designing the system are provided, wherein a MIMO transmitter may include N transmission antennas, and an output transfer function of the MIMO transmitter may be adjusted based on phase difference between a direct path from each of the N transmission antennas to each of the M reception antennas and a delay path from each of the N transmission antennas to each of the M reception antennas.
Abstract:
Provided is a method for handover for wireless communication of a high-speed mobile. The method may include receiving, from a candidate communication base station able to communicate with the high-speed mobile, location information of the candidate communication base station and location information of a neighboring communication base station near the candidate communication base station, obtaining current location information and speed information of the high-speed mobile based on global positioning system (GPS) satellite information of the high-speed mobile and topographic information around the high-speed mobile, determining an optimal communication base station among the candidate communication base station and the neighboring communication base station, based on the location information of the candidate communication base station, the location information of the neighboring communication base station, the current location information of the high-speed mobile, and the speed information of the high-speed mobile, and executing handover to the optimal communication base station.
Abstract:
Provided is a wireless link system using a multiband, the system including: a common baseband module to operate in a first frequency band and a second frequency band higher than the first frequency band; at least one low radio frequency (RF) module to process a signal output from the common baseband module in the first frequency band; at least one high RF module to process a signal output from the common baseband module in the second frequency band; a plurality of antennas electrically connected to the at least one low RF module and the at least one high RF module; and a control unit to adaptively allocate a control signal and data to the at least one low RF module and the at least one high RF module based on state information of a wireless channel.