Abstract:
A D2D (Device-to-Device) discovery method is provided which enables a first terminal within a first cell to discover a second terminal within a second cell without relay of a base station. The first terminal receives, from a first base station of the first cell, information about a first resource for D2D discovery through a SIB (System Information Block) or RRC (Radio Resource Control) message. The first terminal transmits a D2D discovery signal using the first resource.
Abstract:
A method of managing a resource is provided by a base station. The base station allocates a resource to a terminal, and generates a downlink control channel including information of the allocated resource and a transmission time of a next downlink control channel. Further, the base station transmits the downlink control channel to the terminal.
Abstract:
A method of a terminal may comprise: obtaining, from a non-terrestrial base station, terrestrial service area information for application of a cell measurement relaxation method; receiving neighbor cell information from the non-terrestrial base station; identifying a measurement target neighbor cell based on the neighbor cell information; determining information on a service area of the measurement target neighbor cell based on the terrestrial service area information; and triggering cell measurement based on a location of the terminal and the information on the service area of the measurement target neighbor cell.
Abstract:
A handover method for a satellite base station, performed by a terminal, may comprise selecting at least one candidate satellite base station; performing signal strength measurement on a first candidate satellite base station among the at least one candidate satellite base station; in response to determining that the first candidate satellite base station is available according to a result of the signal strength measurement, selecting the first candidate satellite base station as a target satellite base station; and in response to determining that the first candidate satellite base station is not available according to the result of the signal strength measurement, performing signal strength measurement on a second candidate satellite base station among the at least one candidate satellite base station.
Abstract:
Disclosed are a method and an apparatus for configuring a path in a communication system including an Xhaul network. A method for changing a path, performed by a first XDU, may comprise receiving from the XCU a path setup request message requesting to change a first path between the second XDU and the third XDU to a second path between the first XDU and the third XDU; receiving an SN status transfer message including an SN of data for the third XDU from the second XDU belonging to the first path, when the path setup request message is received; receiving from the second XDU the data corresponding to the SN indicated by the SN status transfer message; configuring the second path with the third XDU; and transmitting the data received from the second XDU to the third XDU through the second path.
Abstract:
There is provided a transmission/reception method of a base station in a device to device (D2D) communication environment in which terminals directly communicate with each other. The base station variably sets the transmission power intensity of a downlink signal over time. Furthermore, the base station broadcasts the downlink signal with set transmission power intensity.
Abstract:
Upon receiving a multicast packet from a base station, a forwarding terminal connected to the base station establishes a multicast connection with at least one direct communication terminal having a direct communication group identifier mapped to a multicast IP address of the multicast packet, and transmits the multicast packet to the at least one direct communication terminal, thereby providing multicast services to a direct communication terminal not connected to the base station.
Abstract:
A mobile relay station (RS) and a handover method thereof are provided. When it is determined that a mobile RS performs handover from a superordinate base station (BS) to a target BS, information indicating admission of handover is received from the superordinate BS. The mobile RS transmits a service unavailability section to a subordinate terminal, whereby the subordinate terminal is prevented from performing handover to a different BS or a different RS.
Abstract:
Disclosed are operation methods of communication node supporting direct communications in network. The operation method may comprise generating control information which includes parameters used for transmitting and receiving data; transmitting, to a second UE, the control information through a physical sidelink control channel (PSCCH); and transmitting, to the second UE, the data through a physical sidelink shared channel (PSSCH) based on the parameters. Therefore, a performance of the network can be enhanced.
Abstract:
Disclosed are operation methods of communication node supporting direct communications in network. The operation method comprises obtaining scheduling information configured for the direct communications from a first base station; identifying modulation and coding scheme (MCS) information and radio resource information included in the scheduling information; and transmitting, to a second UE, a first message to which a MCS indicated by the MCS information is applied through radio resources indicated by the radio resource information. Therefore, performance of a communication system can be enhanced.