Abstract:
Disclosed is a method for allocating a resource of a terminal. The method includes: receiving downlink data from a base station; and allocating a resource for a device-to-device communication to a sub-frame by considering a hybrid ARQ (HARQ) transmission delay with respect to the received downlink data.
Abstract:
Disclosed is a communication method for coexisting with a non-licensed band communication system of a non-licensed band in a licensed band communication system. The method includes: transmitting a signal by a transmitter in order to operate in a non-licensed band, when the signal is a transmission target signal having frames and a wireless local area network (WLAN) preamble signal is inserted to the front of each frame of the transmission target signal; and extracting the WLAN preamble signal from the signal of the transmitter by a receiver to synchronize with the transmitter.
Abstract:
A wireless communication method may include performing, by a first system, channel monitoring of a first band, detecting a second system that uses the first band, determining whether the first system is to be used in preference to the second system, and allocating a radio resource of the first band to the first system based on whether the first system is to be used in preference to the second system.
Abstract:
Disclosed herein is a method for transmitting, by a terminal, a sounding reference signal (SRS). The terminal receives a grant for uplink multiple subframes from a base station. The terminal determines a first subframe for an SRS transmission of the terminal among the uplink multiple subframes on the basis of SRS transmission position information received from the base station. Further, the terminal transmits the SRS in the first subframe.
Abstract:
Disclosed is a method for communicating in a network supporting licensed and unlicensed bands. A terminal operation method comprises the steps of: detecting a control channel of a subframe #n transmitted from a base station; obtaining, from the control channel, a DCI for an uplink grant; executing channel sensing on the basis of channel connection-related information included in the DCI; and transmitting, to the base station, a subframe #(n+1) if the result of executing channel sensing is an idle state. Thus, the performance of the communication network may be improved.
Abstract:
Disclosed is a method for scheduling an uplink transmission in a communication network. A terminal operation method comprises the steps of: detecting a control channel of a subframe #n transmitted from a base station; receiving an uplink grant from the control channel; and transmitting, to the base station, a plurality of subframes scheduled by the uplink grant. Thus, the performance of the communication network may be improved.
Abstract:
Provided is a PIM detection apparatus including: a tone signal input unit configured to apply a tone signal having a first frequency characteristic to a test target apparatus; a sequence signal input unit configured to apply a sequence signal having a second frequency characteristic to the test target apparatus; a PIM detector configured to receive a Passive Intermodulation (PIM) signal from the test target apparatus, and to detect a delay time and a size of the PIM signal based on the sequence signal; and a PIM position determiner configured to determine a PIM occurrence position by using the delay time and the size of the PIM signal.
Abstract:
A wireless device of a communication system randomly selects a backoff counter at a contention window interval corresponding to a contention window size that is determined according to a backoff stage, attempts packet transmission, when the backoff counter becomes 0 while reducing the backoff counter, when a radio channel is in an idle status, and increases the contention window size while increasing the backoff stage by 1 according to a first predetermined condition. In this case, as the backoff stage increases, a contention window size has a concave down increasing form.
Abstract:
An exemplary embodiment of the present information discloses a base station which transmits a discovery reference signal (DRS) in an unlicensed band, including: a transmission control unit which sets different timings to transmit the DRS for each of a plurality of channels; and a communication unit which transmits the DRS to the outside through the plurality of channels based on the set timing.
Abstract:
Provided are a data frame structure of a wireless communication system, which follows a sharing protocol which may be operated to coexist with a system that operates in an unlicensed spectrum, such as a WiFi system, and the like in the wireless communication system using a licensed spectrum such as an LTE system and an operation method of the system, and a terminal and a device of a base station for the operation.