Abstract:
Provided is a method for transferring and bonding devices. The method includes applying an adhesive layer to a carrier, arranging a plurality of devices, attaching the arranged devices to the carrier, applying a polymer film to a substrate, aligning the carrier to which the plurality of devices are attached with the substrate, bonding the plurality of devices to the substrate by radiating laser, and releasing the carrier from the substrate to which the plurality of devices are bonded.
Abstract:
Provided is a method for manufacturing a semiconductor package, the method including providing a semiconductor chip on a substrate, providing a bonding member between the substrate and the semiconductor chip, and bonding the semiconductor chip on the substrate by irradiating of a laser on the substrate. Here, the bonding member may include a thermosetting resin, a curing agent, and a laser absorbing agent.
Abstract:
A 3D optical switch for transferring an optical signal between a plurality of layers of an optical integrated circuit, which comprises: a first optical coupler for distributing the optical signal input to a first optical waveguide deployed in a first layer among the plurality of layers to a second optical waveguide deployed in a second layer different from the first layer; a phase shifter for changing a phase of a first optical signal in the first optical waveguide passing through the first optical coupler and a phase of a second optical signal in the second optical waveguide distributed by the first optical coupler; and a second optical coupler for combining the first optical signal of which the phase is changed and the second optical signal of which the phase is changed is provided.
Abstract:
Provided is a thermo-optic optical switch including an input waveguide configured to receive an optical signal, an output waveguide configured to output the optical signal, branch waveguides branching from the input waveguide to be connected to the output waveguide, and heater electrodes disposed on the branch waveguides and configured to heat the branch waveguides, wherein the branch waveguides includes first and second phase shifters having first and second thermo-optic coefficients of opposite signs.
Abstract:
A wavelength division multiplexer is disclosed. The wavelength division multiplexer may include an input waveguide, in which a plurality of Bragg gratings for separating multiplexed optical signals into respective optical signals are provided, and a plurality of output waveguides connected to the input waveguide and configured to receive the optical signals separated by the plurality of Bragg gratings. The plurality of Bragg gratings may include a first Bragg grating including first protrusions each having a first width, and a second Bragg grating including second protrusions each having a second width larger than the first width. Each of the first and second protrusions may include a curved side surface, to which a corresponding one of the optical signals is incident.
Abstract:
Provided is an optical switch including a substrate, a first optical waveguide disposed on the substrate and having a conductive portion disposed on one surface thereof, and a second optical waveguide disposed on the substrate being spaced apart from the first optical waveguide and having an electrode portion disposed on one surface thereof. The electrode portion and the conductive portion face each other. The electrode portion controls an optical field between the first optical waveguide and the second optical waveguide.
Abstract:
Provided is a photodetector including a substrate, a first doped region on the substrate, a second doped region having a ring structure, wherein the second doped region is provided in the substrate, surrounds the first doped region and is horizontally spaced apart from a side of the first doped region, an optical absorption layer on the first doped region, a contact layer on the optical absorption layer, a first electrode on the contact layer, and a second electrode on the second doped region.
Abstract:
Provided is a flat-top mode generating device. The flat-top mode generating device includes an input waveguide, a double-tapered structure connected to the input waveguide, and an input star coupler connected to the double-tapered structure. The double-tapered structure includes a first part having a first height hat is equal to that of each of the input waveguide and the input star coupler, and a second part disposed in the first part on the plane and having a second height that is less than the first height, the second part being tapered from the input star coupler toward the input waveguide.