Abstract:
The disclosure relates to a non-dispersive infrared (NDIR) gas sensor which detects the concentration of gas with a simple structure and method by manufacturing an optical waveguide with a gas-permeable polymer material instead of a conventional cavity or chamber type. An optical signal travels through the optical waveguide of gas-permeable polymer by total internal reflection, and the gas naturally penetrates the optical waveguide without the use of separate inlet and outlet openings, so that the optical signal and gas particles come into contact with each other within the optical waveguide. Since the optical signal detected by a photodetector at the other end of the optical waveguide after traveling while contacting the gas particles has properties changed according to the concentration of the gas which they have contacted in the optical waveguide, it is possible to measure the concentration of a specific gas from the detected optical signal.
Abstract:
The loop antenna includes a loop coil connected to an RF signal source of a reader through a feed cable, and a switch that is turned on and off depending on a DC voltage that is proportional to the magnitude of an RF signal supplied from the RF signal source of the reader and opens the loop coil when turned off and closes the loop coil when turned on.
Abstract:
A tag apparatus communicating with a reader acquires a command from a signal that is received from the reader, converts data corresponding to the acquired command to a plurality of multi-level parallel data, and generates a plurality of tag load impedances based on bias voltages that are mapped to correspond to each level of the plurality of parallel data. Therefore, a signal having electrical energy corresponding to the plurality of tag load impedances is transmitted to the reader.