Abstract:
Disclosed is a silicon photonics-based optical transmission apparatus. The apparatus includes an optical modulator chip of a ground-signal-ground (GSG) electrode array including two phase shifters for differential driving, a sub-substrate including a metal electrode of a periodic pattern to connect two ground metal electrodes to each other at a GSG electrode connected to each of the two phase shifters, and a solder bump having a same periodic pattern as the metal electrode of the sub-substrate to connect the ground metal electrodes of the optical modulator chip and the metal electrode of the periodic pattern of the sub-substrate.
Abstract:
Disclosed are a terahertz signal generation apparatus and a terahertz signal generation method using the same. The terahertz signal generation apparatus includes first and second resonators configured to respectively output an optical signal of a first resonant frequency and an optical signal of a second resonant frequency from an optical signal input through a gain medium, an optical modulator configured to optically modulate the output optical signal of the second resonant frequency, an optical combiner configured to combine the CW optical signal of the first resonant frequency and the modulated optical signal of the second resonant frequency, and a signal generator configured to generate a terahertz signal using heterodyne beating between the CW optical signal of the first resonant frequency and the modulated optical signal of the second resonant frequency, wherein the first resonant frequency and the second resonant frequency are processed to have a predetermined frequency difference.
Abstract:
According one embodiment of the present disclosure, there is provided a silicon photonics-based optical modulation device having two metal layers. The optical modulation device includes a phase shifter, a ground unit, and a pad unit. The phase shifter includes a first signal electrode, a second signal electrode, and at least two ground electrodes formed in a first metal layer. The phase shifter includes two silicon optical waveguides. The ground unit is formed in a second metal layer different from the first metal layer. The pad unit is formed in the second metal layer, provided with a first local area electrically connected to the ground unit, and electrically connected to the first signal electrode and the second signal electrode via a second local area thereof electrically isolated from the ground unit.
Abstract:
Disclosed is a silicon photonics-based electronic-photonic integrated circuit (EPIC). The silicon photonics-based EPIC includes a silicon photonic integrated circuit (PIC) chip in which an optical device is mounted on a silicon-on-insulator (SOI) wafer including a trench region, an electronic integrated circuit (EIC) chip mounted in the trench region of the PIC chip, and an electrical interface configured to connect an electrode pad of the PIC chip and an electrode pad of the EIC chip.
Abstract:
Provided is a phase error compensating apparatus. The phase error compensating apparatus may include a waveguide array disposed between a first free propagation region and a second free propagation region and configured to allow a light signal passed through the first free propagation region to move toward the second free propagation region, in which a length of each of the waveguides included in the waveguide array may be adjusted to compensate for a phase error of light signals passed through the waveguides.
Abstract:
A flexible printed circuit board (FPCB) for an optical module includes: a signal via pad connected with a signal lead pin of the optical module; a ground layer spaced apart from the signal via pad; an isolation gap formed between the signal via pad and the ground layer; and a protective layer which is formed at a portion that comprises the isolation gap, and which, when connected with the signal via pad, compensates for parasitic inductance caused by a protruding signal lead pin.
Abstract:
An arrayed waveguide grating device and a method for manufacturing the arrayed waveguide grating device. The arrayed waveguide grating device includes input channel waveguides formed on a substrate; output channel waveguides formed on the substrate that correspond to the input channel waveguides; and arrayed waveguides with different lengths interposed between the input channel waveguides and the output channel waveguides on the substrate while free propagation regions being formed at both ends of the arrayed waveguides, wherein the arrayed waveguides are designed so that a free spectral range (FSR) of a higher-order mode is twice or greater than a bandwidth of a region of interest (ROI).