Abstract:
An improved system and method are disclosed for peer-to-peer communications. In one example, the method enables an endpoint to sweep an ongoing communication session to another endpoint by transferring session information between the endpoints.
Abstract:
An improved system and method are disclosed for peer-to-peer communications. In one example, the method enables an endpoint to engage in a call with another endpoint using a third party instant message system to carry instant messages containing signaling information and a route that is external to the third party instant message system for both signaling and media information.
Abstract:
A system and method for endpoint handoff in a hybrid peer-to-peer networking environment are provided. In one example, the method includes logging into the peer-to-peer network by a first endpoint. The first endpoint directly notifies a second endpoint that the second endpoint is to transfer an active communication session existing between the second endpoint and a third endpoint from the second endpoint to the first endpoint. The first endpoint receives session parameters associated with the active communication session directly from the second endpoint and directly notifies the third endpoint that the first endpoint is online. The first endpoint then re-establishes the active communication session with the third endpoint using the session parameters.
Abstract:
An improved system and method for sharing a document between two communication devices that do not have an application that can display the document. In one example, the document is sent by the communication device that is sharing the document to a document server for processing into pages of one or more different document types, and both communication devices retrieve the stored pages as needed for display. The sharing communication device updates the other communication device when a new page is to be retrieved from the document server.
Abstract:
An improved system and method are disclosed for conference bridging. In one example, the method enables a device engaged in a conference call as a participant to bridge the conference call and to transfer the bridge to another device engaged in the conference call as a participant.
Abstract:
An improved system and method are disclosed for peer-to-peer communications. In one example, the method enables an endpoint to engage in a call with another endpoint using a third party instant message system to carry instant messages containing signaling information and a route that is external to the third party instant message system for both signaling and media information.
Abstract:
An improved system and method are disclosed for improving functionality in software applications. In one example, the method includes a computing entity having a network interface, a processor, and a memory configured to store a plurality of instructions. The instructions include instructions for a superblock application having instructions for a function block included therein. The function block is configured to provide functions that are accessible to the superblock application via an application programming interface (API). The functions are provided within the superblock application itself and are accessible within the superblock application without switching context to another application on the computing entity.
Abstract:
An improved system and method are disclosed for sharing a document between two communication devices that do not have an application that can display the document. In one example, the document is sent by the communication device that is sharing the document to a document server for processing into pages of one or more different document types, and both communication devices retrieve the stored pages as needed for display. The sharing communication device updates the other communication device when a new page is to be retrieved from the document server.
Abstract:
An improved system and method are disclosed for enabling unified communications and collaboration (UCC) communications between incompatible communication systems. For example, the method may include using a universal UCC (U2C2) gateway in a first system to establish a connection with a server in a second system. The U2C2 gateway mimics a behavior defined for use within the second system when communicating with the server in order to be compatible with the second system. The U2C2 gateway notifies a multipoint control unit (MCU) within the first system of the connection. The MCU manages the UCC session and recognizes the U2C2 gateway as the source and destination for communications corresponding to the connection. The U2C2 gateway normalizes media received from the second system for compatibility with the first system before sending the media to the MCU for the UCC session. The U2C2 gateway also normalizes media received from the MCU for compatibility with the second system before sending the media to the second system.
Abstract:
A method and system for supporting a cross-domain communication session between communication platforms using a bridge server are provided. In one example, the method includes registering the bridge server with multiple platforms using a user identifier. A request is received from one of the platforms to establish a communication session with a user corresponding to the user identifier. A communication leg is created for each of the platforms. The leg from which the request was received is an incoming leg and the other legs are outgoing legs. The request is sent over the outgoing legs. An acceptance is received from one of the outgoing legs. A cancel message is sent over the outgoing legs from which the acceptance was not received. The acceptance is sent over the incoming leg. The incoming leg and the outgoing leg from which the acceptance was received are bridged to establish the session.