Abstract:
An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes a first light source module, a second light source module, and an interference module. The first light source module is formed by a laser light source and lens units and used to emit a first light signal. The second light source module is formed by fiber units and lens units. The second light source module is coupled to the first light source module in series. The second light source module is used to receive a first light signal and emit a second light signal. The interference module is coupled to the second light source module and used to receive the second light signal and provide a first incident light and a second incident light to an object to be detected and a reference mirror respectively.
Abstract:
An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes an image capturing unit, a data comparing unit, a detection unit, a location determining unit, and a data output unit. The image capturing unit captures images of different portions of a face of a person to be tested to obtain a plurality of face images. The data comparing unit compares the plurality of face images with a built-in database. The detection unit detects on an eye of the person to be tested. The location determining unit automatically determines whether the eye detected by the detection unit is left-eye or right-eye. The data output unit selectively outputs a detection result of the detection unit, a comparing result of the data comparing unit, and/or a determining result of the location determining unit.
Abstract:
The optical apparatus includes an optical measurement module, a central processing module, and an air-puff module. The air-puff module is used for generating an air pressure to a surface of the cornea according a blow pattern to cause a deformation of the cornea. The optical measurement module includes a first unit and a second unit. The first unit is used for measuring an intraocular pressure (IOP) of the eye according to the deformation of the cornea. The second unit is used for measuring properties of the cornea in an optical interference way. The central processing module is coupled to the first unit and the second unit and used for receiving and processing the intraocular pressure and the properties of the cornea to provide a result.
Abstract:
A measurement apparatus used to measure an object is disclosed. The measurement apparatus includes at least one sensing unit, a first optical module, a second optical module, a data processing unit and at least one prompting unit. The at least one sensing unit is disposed near the object to perform a contact or proximity sensing on the object. The first optical module is disposed near the object and adjacent to the at least one sensing unit. The first optical module includes at least one lens unit. The second optical module and the object are disposed at opposite sides of the first optical module. The second optical module includes a light source and at least one optical component. The data processing unit is coupled to at least one sensing unit. The at least one prompting unit is coupled to the data processing unit.
Abstract:
An optical coherence tomography apparatus includes a light source, a light coupling module, and an optical path difference generating module. The light source emits a coherent light. The light coupling module divides the coherent light into a first incident light and a second incident light. The first incident light is emitted to an item to be inspected and a first reflected light is generated. The second incident light is emitted to the optical path difference generating module, a second reflected light is generated according to the second incident light by the optical path difference generating module through changing the transparent/reflection properties of at least one optical devices of the optical path difference generating module, so that there is a optical path difference between the first reflected light and the second reflected light.
Abstract:
An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.
Abstract:
An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.