Abstract:
This application discloses a system for presenting data to a user based on requests to move data from primary storage to secondary storage. The system receives a request to move data that satisfies at least one criterion, from primary to secondary data storage. The system then identifies an initial database query from the request, and further builds a nested database query from the initial database query according to a database schema. Next, the system estimates a size of a result of executing the nested database query. Finally, the system provides for display to the user the estimated size.
Abstract:
This application discloses a system for processing requests for data in production and archive/backup databases. The system stores a mapping of data in production and archive databases to multiple different data storage locations, including a production system storing at least one production database and an archive system storing at least one archive database. The system receives a data request from an application component, which manages or receives data from a user interface and has received the data request directly from the user interface. The system translates the data request to one or more database queries based on the mapping. The system causes to execute the database queries against data on the production or archive system. The system returns a result of executing the one or more database queries to the application component, where the application component returns the result to the user via the user interface.
Abstract:
A data storage system, according to certain aspects, automatically backs up source data when the replication data is faulty. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. When permitted by the user system configuration, the system automatically backs up source data when replication has failed.
Abstract:
This application discloses a server for handling data reporting requests in a system that also comprises storage managers, primary storage devices, and secondary storage devices connected over one or more networks. The server receives, from each storage manager, a copy of data associated with the storage manager, and stores the received copies in one or more local databases. The server builds offline one or more indices for part or all of the received copies to improve query processing against the one or more local databases. Next, the server receives a request over a network from one of the storage managers or a standalone console, which received the request from a user for a report of data associated with the storage managers. The server produces a data report in response to the request, using the one or more indices and without impacting performance of the storage managers.
Abstract:
This application discloses a system for processing requests for data in production and archive/backup databases. The system stores a mapping of data in production and archive databases to multiple different data storage locations, including a production system storing at least one production database and an archive system storing at least one archive database. The system receives a data request from an application component, which manages or receives data from a user interface and has received the data request directly from the user interface. The system translates the data request to one or more database queries based on the mapping. The system causes to execute the database queries against data on the production or archive system. The system returns a result of executing the one or more database queries to the application component, where the application component returns the result to the user via the user interface.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.
Abstract:
A data storage system, according to certain aspects, automatically determines the accuracy of replication data when performing data backup operations. For instance, the system performs data backup using replication data rather than source data to reduce the processing load on the source system. The backup data is then associated with the source data as if the backup had been performed on the source data. If the replication system fails, then backing up replication data results in backup data that does not accurately reflect the source data. The system automatically determines the accuracy of replication data during data backup.