Abstract:
A hybrid cooling server assembly can have a printed circuit board (PCB) with a processor socket disposed thereon and a hybrid cooling plate can be operably coupled with the processor socket. A radiator can having a working fluid received therein and be in fluidic communication with the radiator and the hybrid cooling plate by one or more tubular members. One or more cooling fans can be proximal to the radiator. The working fluid can be operable to receive heat from the cooling plate and reject heat at the radiator and the one or more cooling fans can be operable to produce an airflow across the hybrid cooling plate, thereby allowing the hybrid cooling plate transfer thermal energy to the airflow.
Abstract:
A highly scalable application network appliance is described herein. According to one embodiment, a network element includes a switch fabric, a first service module coupled to the switch fabric, and a second service module coupled to the first service module over the switch fabric. In response to packets of a network transaction received from a client over a first network to access a server of a data center having multiple servers over a second network, the first service module is configured to perform a first portion of OSI (open system interconnection) compatible layers of network processes on the packets while the second service module is configured to perform a second portion of the OSI compatible layers of network processes on the packets. The first portion includes at least one OSI compatible layer that is not included in the second portion. Other methods and apparatuses are also described.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
A high density storage housing includes a housing and a plurality of drive carriers. The housing includes a storage area and a motherboard. The storage area extends across at least a portion of a width and at least a portion of a depth of the housing. The motherboard extends across the storage area and includes a plurality of first connectors. The plurality of drive carriers each include a second connector configured to mate directly with one of the plurality of first connectors. Moreover, the second connector of each drive carrier of the plurality of drive carriers is disposed on a long side of its drive carrier so that the plurality of drive carriers mount storage drives to the housing in a sideways orientation.
Abstract:
A high density storage housing includes a housing and a plurality of drive carriers. The housing includes a storage area and a motherboard. The storage area extends across at least a portion of a width and at least a portion of a depth of the housing. The motherboard extends across the storage area and includes a plurality of first connectors. The plurality of drive carriers each include a second connector configured to mate directly with one of the plurality of first connectors. Moreover, the second connector of each drive carrier of the plurality of drive carriers is disposed on a long side of its drive carrier so that the plurality of drive carriers mount storage drives to the housing in a sideways orientation.
Abstract:
A highly scalable application network appliance is described herein. According to one embodiment, a network element includes a switch fabric, a first service module coupled to the switch fabric, and a second service module coupled to the first service module over the switch fabric. In response to packets of a network transaction received from a client over a first network to access a server of a data center having multiple servers over a second network, the first service module is configured to perform a first portion of OSI (open system interconnection) compatible layers of network processes on the packets while the second service module is configured to perform a second portion of the OSI compatible layers of network processes on the packets. The first portion includes at least one OSI compatible layer that is not included in the second portion. Other methods and apparatuses are also describe.
Abstract:
A highly scalable application network appliance is described herein. According to one embodiment, a network element includes a switch fabric, a first service module coupled to the switch fabric, and a second service module coupled to the first service module over the switch fabric. In response to packets of a network transaction received from a client over a first network to access a server of a data center having multiple servers over a second network, the first service module is configured to perform a first portion of OSI (open system interconnection) compatible layers of network processes on the packets while the second service module is configured to perform a second portion of the OSI compatible layers of network processes on the packets. The first portion includes at least one OSI compatible layer that is not included in the second portion. Other methods and apparatuses are also described.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.
Abstract:
Techniques for sending Compute Express Link (CXL) packets over Ethernet (CXL-E) in a composable data center that may include disaggregated, composable servers. The techniques may include receiving, from a first server device, a request to bind the first server device with a multiple logical device (MLD) appliance. Based at least in part on the request, a first CXL-E connection may be established for the first server device to export a computing resource to the MLD appliance. The techniques may also include receiving, from the MLD appliance, an indication that the computing resource is available, and receiving, from a second server device, a second request for the computing resource. Based at least in part on the second request, a second CXL-E connection may be established for the second server device to consume or otherwise utilize the computing resource of the first server device via the MLD appliance.