Abstract:
A multitrack optical disk has two or more circular or spiral tracks, which are recorded or played back in simultaneous sets for high data rates. Tracking is accomplished by sets of first and second tracking pads, which lie partially on and partially off the track paths. The amount of inter-track space required to accommodate the track pads is reduced by placing the overlap of the tracking pads in the same inter-track space, and by tracking any additional simultaneous tracks in excess of two by mechanical coupling with the first two.
Abstract:
An infrared imager includes an array of imager elements. Infrared radiation is focussed onto the array by a lens assembly including a plurality of lens elements. The imager array and the lens are within a cold box which includes an infrared-transparent window. For low noise, a spectrum-limiting filter is also located within the cold box, between the lens assembly and the window, at or within the pupil relief distance of the lens assembly. The pupil relief distance is extended by the use of at least one aspheric surface for one of the lens elements of the lens assembly. The mounting structure of the filter is the aperture stop for the infrared imager. The field of view may be reduced, if desired, without significant effect on the noise performance by use of a telescope including a second lens assembly optically identical to the first lens assembly, operated in conjunction with a confocal large-diameter lens assembly.
Abstract:
An optical system is described for use in processing information on a surface of an erasable record disc. The system decreases erasure time by forming an elongated spot from the generally circular cross section of a collimated laser beam so as to provide increased illumination time to an area recorded on the disc. The system includes a source of collimated light having a generally circular cross section, a cylindrical lens for focusing one aspect of the collimated light at a finite distance f, and a beam expander having the principal plane of its input lens at the distance f from the cylindrical lens, where the light forms a beam waist. An objective lens focuses the expanded elongated beam to a diffraction spot on the surface of the record disc. A linear actuator, such as a voice coil, responds to a control signal to position the cylindrical lens in the path of the collimated light beam for the erasing process, or out of the light path for the recording process.
Abstract:
An optical beam switch is provided in a multiple beam optical disc record and playback system. Current systems for very high data rate optical disc mass memory apparatus include requirements for near-continuous recording of data using two separate turntables in a single apparatus. To reduce cost and complexities in the system as well as power requirements, the optical system includes a beam switch that allows a single record laser and modulator to be shared between two turntables. In accordance with the system a half-wave plate is shifted into and out of the beam path to effect polarization change of the light beam. A polarizing beam splitter, which follows the half-wave plate in the beam path, shifts the light beam in one of two directions depending upon the polarization of the light beam or, in other words, the position of the half-wave plate.
Abstract:
A wideband optical disc data record/playback apparatus includes apparatus for splitting the output light beam of a single laser into a plurality of read and record light beams. The read and record beams are directed along a read light path including a beam splitter and a record light path including a modulator and a beam splitter respectively. In the apparatus, the read and record light beams are recombined and directed along a common light path to an objective lens where the beams are focused on a surface of a record medium as diffraction limited spots. A dual-input lens beam-expansion telescope is utilized with the beam combiner optics to provide expanded light beams which fill the entrance aperture of the objective lens.
Abstract:
A scanner for reading binary digit spots on a transparent film includes a laser light beam which is directed through a beam splitter and through the film to a mirror, from which it is reflected back through the film to illuminate a small area on the film. Light which is not blocked by a recorded spot on the film continues back to the beam splitter, from which the beam is directed to a photodetector. The photodetector is positioned to receive light from solely a portion of the illuminated area of the film, to provide high definition scanning not adversely affected by distortion of the illuminating light beam by imperfections in the film and mirror.