Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Each solar power station includes a plurality of satellite modules. The plurality of satellite modules each include a plurality of modular power generation tiles including a photovoltaic solar radiation collector, a power transmitter and associated control electronics. Numerous embodiments relate to efficient power generation tiles. In one embodiment, an efficient power generation tile includes: at least one photovoltaic material; and at least one concentrator that redirects incident solar radiation towards a photovoltaic material such that the photovoltaic material experiences a greater solar flux relative to the case where the photovoltaic material experiences unaltered solar radiation.
Abstract:
The present invention uses a treatment that involves an etching treatment that forms a pnictogen-rich region on the surface of a pnictide semiconductor film The region is very thin in many modes of practice, often being on the order of only 2 to 3 nm thick in many embodiments. Previous investigators have left the region in place without appreciating the fact of its presence and/or that its presence, if known, can compromise electronic performance of resultant devices. The present invention appreciates that the formation and removal of the region advantageously renders the pnictide film surface highly smooth with reduced electronic defects. The surface is well-prepared for further device fabrication.