Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
An example method is provided in one example embodiment and includes receiving performance metric information from a plurality of small cell radios, wherein the performance metric information includes, at least in part, a number of user equipment that are to be scheduled on a first type and a second type of subframes for each small cell radio; determining resource allocation parameters for the plurality of small cell radios; exchanging interference information between two or more small cell radios of the plurality of small cell radios that includes an indication of whether a particular small cell radio is interfering with or is interfered by another small cell radio of the two or more small cell radios; and scheduling downlink resource transmissions on the first type and the second type of subframes for user equipment served by the two or more small cell radios.
Abstract:
A method is provided in one example embodiment and may include calculating, by one or more of a plurality of small cell radios, one or more sets of candidate power control parameters using a first interference constraint for uplink user equipment (UE) transmissions for UE served by the one or more of the plurality of small cell radios; determining, at a central management entity, whether an average of a sum of an expected interference for UE associated with the plurality of small cell radios violates a second interference constraint for any of the one or more sets of candidate power control parameters; and generating one or more messages for each of the plurality of small cell radios identifying one or more particular sets of power control parameters that provide for meeting the second interference constraint.
Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
A method is provided in one example embodiment and may include calculating, by one or more of a plurality of small cell radios, one or more sets of candidate power control parameters using a first interference constraint for uplink user equipment (UE) transmissions for UE served by the one or more of the plurality of small cell radios; determining, at a central management entity, whether an average of a sum of an expected interference for UE associated with the plurality of small cell radios violates a second interference constraint for any of the one or more sets of candidate power control parameters; and generating one or more messages for each of the plurality of small cell radios identifying one or more particular sets of power control parameters that provide for meeting the second interference constraint.
Abstract:
An example method is provided in one example embodiment and includes receiving at least one performance metric from each of a plurality of cells, the at least performance metric associated with a downlink transmission from the cell to one or more user equipment devices associated with the cell. The method further includes determining a fraction of resources for allocation within a fractional frequency reuse portion of a frequency spectrum based upon the received at least one performance metric, and determining a fraction of the resources for allocation within a reuse one portion of the frequency spectrum based upon the determined fraction of resources for allocation within the fractional frequency reuse portion of the frequency spectrum.
Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
A method is provided in one example embodiment and may include calculating, by one or more of a plurality of small cell radios, one or more sets of candidate power control parameters using a first interference constraint for uplink user equipment (UE) transmissions for UE served by the one or more of the plurality of small cell radios; determining, at a central management entity, whether an average of a sum of an expected interference for UE associated with the plurality of small cell radios violates a second interference constraint for any of the one or more sets of candidate power control parameters; and generating one or more messages for each of the plurality of small cell radios identifying one or more particular sets of power control parameters that provide for meeting the second interference constraint.
Abstract:
An example method is provided in one example embodiment and includes receiving performance metric information from a plurality of small cell radios, wherein the performance metric information includes, at least in part, a number of user equipment that are to be scheduled on a first type and a second type of subframes for each small cell radio; determining resource allocation parameters for the plurality of small cell radios; exchanging interference information between two or more small cell radios of the plurality of small cell radios that includes an indication of whether a particular small cell radio is interfering with or is interfered by another small cell radio of the two or more small cell radios; and scheduling downlink resource transmissions on the first type and the second type of subframes for user equipment served by the two or more small cell radios.